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A B S T R A C T

Learning and memory are vital to an animal's survival, and numerous factors can disrupt cognitive performance.
Sleep is an evolutionarily conserved physiological process known to be important for the consolidation of
learning and memory. The zebrafish has emerged as a powerful model organism sharing organizational and
functional characteristics with other vertebrates, providing great translational relevance. In our study, we used a
simple spatial associative learning task to quantify the effects of sleep deprivation (partial vs. total) on learning
performance in zebrafish, using an animated conspecific shoal image as a reward. Control animals maintained on
a regular light:dark cycle were able to acquire the association between the unconditioned and conditioned
stimulus, reinforcing zebrafish as a valid and reliable model for appetitive conditioning tasks. Notably, sleep
deprivation did not alter the perception of and response to the conspecific image. In contrast, although partial
sleep deprivation did not impair cognitive performance, total sleep deprivation significantly impaired perfor-
mance on the associative learning task. Our results suggest that sleep is important for learning and memory, and
that the effects of sleep deprivation on these processes can be investigated in zebrafish.

1. Introduction

Learning is an important process that is required for the acquisition
of new skills and concepts based on past experiences (Amrein, 2015;
Gould et al., 1999; Grafman, 2000; Kolb and Whishaw, 1998). The
ability to modify behavioral patterns based on past experiences confers
several advantages including foraging, courtship (Sison and Gerlai,
2010), and predator avoidance (Johnston, 1982). Moreover, the bene-
fits associated with the predictive nature of learning may be enhanced
when individuals retain long-term memories. However, a number of
endogenous and exogenous factors can improve and/or impair learning
(Levin et al., 2006; Luchiari et al., 2015; Sasson et al., 2007).

Among the number of factors that enhance learning and memory
consolidation, sleep is one of the most commonly studied. Sleep can be
defined as behavioral quiescence and is associated with an increased
arousal threshold (Schmidt, 2014; Siegel, 2008). During sleep, the brain
exhibits two types of electrical activity: 1) slow wave activity (NREM
sleep, non-rapid eye movement) divided into four stages, and 2) de-
synchronized brain wave activity (REM sleep, rapid eye movement)
represented by muscle atonia and wake-like brain activity (Carlson,
1986; Lent, 2004). While only endothermic animals exhibit REM sleep,

ectothermic vertebrates also show sleep-like behavior (Carlson, 1986;
Siegel, 2008).

Although the function of sleep in animals is still debated, the cu-
mulative effects of sleep deprivation have been associated with nega-
tive health consequences including obesity, diabetes, stroke, and de-
pression, along with a profound economic and societal impact (Colten
and Altevogt, 2006). Research on sleep and sleep disorders have been
increasing, however, diagnoses and treatments are still limited.

Research on the effects of sleep on learning and memory has been a
focus of numerous studies in the field of behavioral neuroscience.
Research in this area of study have focused on rodents and primates
(Inostroza et al., 2013; Kelemen et al., 2014; Lo et al., 2004; Lyamin
et al., 2008; Siegel, 2005). However, research on phylogenetically
distant animals may identify evolutionarily conserved mechanisms
regulating sleep behavior as well as learning and memory. Zebrafish
have been a focus of attention because it is a tractable genetic model
that shares organizational and functional characteristics with other
vertebrates (Gerlai, 2011; Kalueff et al., 2014; Miklósi and Andrew,
2006; Panula, 2010). The main neurotransmitter systems regulating
sleep in mammals are widely conserved in zebrafish, including mono-
aminergic (Holzschuh et al., 2001; Kaslin and Panula, 2001; McLean
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and Fetcho, 2004; Teraoka et al., 2004), cholinergic (Mueller et al.,
2004) and hypocretinergic cell groups (Faraco et al., 2006; Kaslin et al.,
2004; Prober et al., 2006; Yokogawa et al., 2007). A sleep-like beha-
vioral state has been characterized in zebrafish (Zhdanova et al., 2001;
2006) and the pharmacological and genetic aspects of zebrafish sleep
are similar to vertebrates including mammals (Chiu and Prober, 2013).
One of the major advantages of the zebrafish model is the non-invasive
nature of drug administration. Water soluble drugs can be added di-
rectly to the water which is then taken up by the immersed fish through
its skin and gills. This feature has allowed researchers to test the effects
of drugs that are known to alter sleep-like behavior such as alcohol
(Williams and Salamy, 1972; Earleywine and Martin, 1993) and mel-
atonin (Zhdanova et al., 2001; Gandhi et al., 2015), which respectively
have known sedative and sleep promoting effects.

Although zebrafish have been increasingly used in learning and
memory studies (Arthur and Levin, 2001; Bilotta et al., 2005; Lucon-
Xiccato and Dadda, 2014; Pather and Gerlai, 2009; Sison and Gerlai,
2011a; Williams et al., 2002), the effects of sleep deprivation on
learning performance remain unclear in zebrafish. In the present study,
we examined the effects of partial and total sleep deprivation on
learning performance with or without alcohol (ethanol) or melatonin
administration. To quantify learning and memory, we used a spatial
associative learning paradigm, in which a conspecific image was used
as a reward due to the highly social nature of this species (Engeszer
et al., 2007; Saverino and Gerlai, 2008).

2. Material and methods

2.1. Animals and housing

Zebrafish (Danio rerio) were obtained from a local fish farm (Natal,
Rio Grande do Norte, Brazil) and acclimatized for one month prior to
behavioral experiments. Adult zebrafish (3 months, mixed sexes) were
transferred to 50 L tanks in a recirculating system with multistage fil-
tration, including a mechanical filter, a biological filter, an activated
carbon filter and a UV light sterilizing unit. Temperature, pH, and
oxygen levels were measured regularly with fish density maintained at
one animal/l.

Fish were kept on a light:dark cycle of 12 L:12D (12 h light:12 h
dark), with zeitgeber time (ZT) 0 corresponding to lights-on at 7 a.m.
and light intensity of 250 lx. Fish were fed twice daily with brine
shrimp and a commercial diet. Animal use protocols were reviewed and
approved by the Ethical Committee for Animal Use of Federal
University of Rio Grande do Norte (CEUA 022/2012).

2.2. Experimental design

To determine the effect of sleep deprivation (SD) on learning per-
formance, 210 zebrafish were randomly assigned to five different ex-
perimental groups. The sleep deprivation protocol used in the current
study involved extending the light phase and/or exposing fish to pulses
of light during the dark phase (sleep deprivation protocols are described
in detail below).

The (1) Control group (no sleep deprivation) was kept on a 12 L:12D
cycle (n = 30), with lights turning on at 7 a.m. (ZT0). The (2) Partial
sleep deprivation group was kept on a 18 L:06D cycle (n = 45), with 18 h
of light and only 6 h of dark (extended light phase with lights on from
ZT0 to ZT18). The (3) Total sleep deprivation group was also maintained
on 18 L:06D cycle, with light pulses applied for 1 min every 4 min
during the entire dark phase (n= 45) (extended light phase with lights
on from ZT0 to ZT18 and light pulses from ZT18 to ZT0). Two other
groups were also maintained under total sleep deprivation conditions as
described above and received additional drug treatments: (4) Total sleep
deprivation + Ethanol group (1 h acute exposure to 0.5% v/v alcohol;
n = 45) and (5) Total sleep deprivation + Melatonin group (10 days of
chronic exposure to 100 nM melatonin; n = 45). The light:dark cycle

manipulations were maintained for 72 h prior to behavioral testing.

2.3. Sleep deprivation

The light pulse protocol utilizes short pulses of light during the dark
phase of the light-dark cycle and has been previously shown to suppress
sleep-like behavior without inducing excessive stress and/or perturbing
learning and memory (Sigurgeirsson et al., 2013; Yokogawa et al.,
2007). The sleep deprivation protocols (partial and total) used in the
present study have also been previously validated by Pinheiro-da-Silva
et al. (2017) by independently testing 1) the effects of an extended light
phase and 2) light pulses during the dark phase. Briefly, to examine the
effect of extending the light phase of the light-dark cycle, 3 groups of
zebrafish (n = 8) were individually recorded in a 15 L tank during a
24 h period to quantify locomotor activity (average swimming speed)
and the number of sleep episodes. Group 1 was kept on a 12 L:12D cycle
(control), group 2 was subjected to partial sleep deprivation by ex-
tending the light phase (18 L:06D), and group 3 was maintained under
constant conditions (24 L:00D). Pinheiro-da-Silva et al. (2017) found
that fish in groups 1 and 2 were less active during the dark phase (i.e.
reduced swimming speed – 1 = 1.96 ± 1.15 cm/s;
2 = 2.00 ± 0.05 cm/s) compared to fish in group 3 which were
maintained under constant light (6.23 ± 0.83 cm/s). Moreover, sleep
episodes (characterized by Yokogawa et al. (2007) as short periods of
inactivity with the caudal fin dropped down, usually at the bottom or at
the surface of the tank) were observed only for the control
(16.92 ± 11.95 episodes/h of the dark phase) and partially
(15.00 ± 4.10 episodes/h of the dark phase) sleep deprived groups,
with the highest number of sleep episodes recorded for the control
group during the dark phase (control group showed 35.5 ± 3.5 sleep
episodes at the 7th hour of dark while partial group showed
20.0 ± 7.1 at the 1st hour of dark). To test the effect of the light pulses
on sleep-like behavior, Pinheiro-da-Silva et al. (2017) examined the
effect of light pulses during the night, as well as during the day to
control for stress. The authors subjected 2 groups of zebrafish to the
following conditions (1) 12 L:12D cycle with 6 h of light pulses (2 min
on, 2 min off) during the waking period (light phase), and (2) 18 L:06D
cycle and 6 h of light pulses (2 min on, 2 min off) during the entire dark
phase. Fish behavior showed that light pulses do not imply any stress to
the animal, and that this stimulus presented during the dark phase
thwarted fish of sleeping (for more details see Pinheiro-da-Silva et al.,
2017). Additionally, Yokogawa et al. (2007) showed that light induced
sleep deprivation does not produce rebound, while electrical stimula-
tion induces rebound.

In the present study, we extended the deprivation period to 72 h.
This period was shown not to disrupt circadian rhythm and cause any

2 cm 

20 cm 

40 cm

Fig. 1. Schematic overview of the spatial associative learning task. The tank
(40 × 25 × 20 cm) was flanked with two LCD screens on each side. Screens presented an
image of a group of zebrafish of similar size to the experimental test subject. The image
was presented for 30 s, followed by 60 s of a blank screen (ISI), and this was repeated 20
times (20 trials) under three different presentation schemes: 1) one side only, 2) alter-
nating sides and 3) random sides.

J. Pinheiro-da-Silva et al. Pharmacology, Biochemistry and Behavior 159 (2017) 36–47

37



Stimulus presentation on one side only 

0

5

10

15

20

25

30

T
im
e
 o
n
 s
ti
m
u
lu
s
 s
id
e
 (
s
)
 

(a) Control (12L:12D) 

0

5

10

15

20

25

30

T
im
e
 o
n
 s
ti
m
u
lu
s
 s
id
e
 (
s
)
 

(b) Partial SD  (18L:06D) 

0

5

10

15

20

25

30

T
im
e
 o
n
 s
ti
m
u
lu
s
 s
id
e
 (
s
)
 

(c) Total SD  (18L:06P) 

0

5

10

15

20

25

30

T
im
e
 o
n
 s
ti
m
u
lu
s
 s
id
e
 (
s
)
 

(d) Total SD +Eth 

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20

T
im
e
 o
n
 s
ti
m
u
lu
s
 s
id
e
 (
s
)
 

Stimulus trials 

  (e) Total SD +Mel 

Fig. 2. Time spent on the stimulus side of the tank during the 20 trials when the stimulus
was presented on one side only in an appetitive conditioning task using social stimulus as
a reward. Five groups were tested: (a) control (12 L:12D; n= 10), (b) partial SD
(18 L:06D; n = 15), (c) total SD (18 L:06D with light pulses; n = 15), (d) total SD + Eth
(18 L:06D with light pulses + 60 min ethanol exposure before the onset of light pulses on
the last day; n = 15), and (e) total SD + Mel (18 L:06D with light pulses + 10 days
melatonin exposure including the 72 h of sleep deprivation; n= 15). Light:Dark cycle
used was applied during 72 h for each group. In the graphs, black dots represent the time
fish spent in the stimulus side and filled lines represent trends to the stimulus side. For
further details of the results of statistical analysis see Results section.
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effect to the fish physiology. Yokogawa et al. (2007) showed that sleep
deprivation of> 2 weeks is required to induce sleep rebound in zeb-
rafish, and Moura et al. (2017) showed that despite continued light or
dark conditions for up to 30 days zebrafish maintain the circadian
rhythm (observed by Cosinor method - t= 1440).

2.4. Drug exposure

Zebrafish in group 4 (total sleep deprivation + ethanol) were ex-
posed to 0.5% v/v ethanol for 1 h prior to the onset of the dark phase
(from ZT17 to ZT18) on the last day of the sleep deprivation protocol.
The ethanol concentration was achieved by diluting ethanol (99,8%
P.A. – ACS, Dinâmica) with water to a final concentration of 0.5% v/v
in a 15 L tank, a dose previously shown to be stimulatory (Gerlai et al.,
2000). Fish were transferred to the tank containing ethanol solution
and after a 60 min exposure, fish were returned to their home tank. We
chose a 60 min exposure period based on previous studies demon-
strating that this time period is sufficient for ethanol concentrations in
the zebrafish brain to approach equilibrium with the external ethanol
solution (Chatterjee and Gerlai, 2009; Dlugos and Rabin, 2003; Tran
and Gerlai, 2013). A single acute ethanol exposure was used in this
study because this drug was shown to promote sleep (Roehrs et al.,
1999; Roehrs and Roth, 2001) but also to induce tolerance and lack the
sleep-assistance effect after continued usage.

Zebrafish in group 5 (total sleep deprivation + melatonin) were
exposed to 100 nM melatonin for 10 consecutive days, 24 h per day.
Melatonin powder (cat#M5250, Sigma-Aldrich) was dissolved in
ethanol to prepare a stock solution of final concentration of 10 μM.
Then, the stock solution was added to the tank water to achieve a
concentration of 100 nM.

The melatonin treatment continued for 10 consecutive days, 24 h
per day. The tank water and drug concentration was replaced every day
to maintain a constant drug dosage. Exogenous melatonin generates a
peak of action around 2 h after exposure and returns to a basal level up
to 2 h after that (Zhdanova et al., 2001, 2008). Also, it is relevant to
highlight that melatonin promotes sleep-like state under appropriate
sleeping conditions (Bunnell et al., 1992; Lavie, 2001) and acute doses
applied could not generate sleep if the animals were not subjected to
sleeping condition within 2 h of administration.

2.5. Appetitive conditioning task

The appetitive conditioning protocol was modified from Pather and
Gerlai (2009). Individual zebrafish from each experimental group de-
scribed above were transferred from their home tank to a testing tank
(40 × 25 × 20 cm, width × depth × height). The testing tank was
divided in half by a white partition with a 2 cm opening at the bottom
that allowed the fish to swim from one side of the tank to the other. Two
computer monitors (LG-Flatron E2011P-BN, 20″) connected to a
desktop computer (Intel Pentium G3220 3.00GHZ) flanked the testing
tank (Fig. 1). The computers ran an in-house software application that
presented animated images of a zebrafish shoal at varying intervals on
each monitor. Zebrafish are a highly social species and prefer to stay in
close proximity to their conspecifics both in nature and in the labora-
tory (Engeszer et al., 2007). Zebrafish also respond in a similar manner
to computer-animated conspecific images as to live conspecifics (Qin

et al., 2014; Saverino and Gerlai, 2008). Ruhl and McRobert (2005)
have previously shown differences in sex and body size preferences
during shoal formation in zebrafish. Thus, we used an image of six
zebrafish of mixed sexes and similar body sizes compared to the ex-
perimental fish to simulate naturally occurring shoals.

The animated conspecific image was presented on: (a) one side only,

Fig. 3. Time spent on the stimulus side of the tank during the 20 trials when the stimulus
was presented on alternating sides in an appetitive conditioning task using social stimulus
as a reward. Five groups were tested: (a) control (12 L:12D; n = 10), (b) partial SD
(18 L:06D; n = 15), (c) total SD (18 L:06D with light pulses; n = 15), (d) total SD + Eth
(18 L:06D with light pulses + 60 min ethanol exposure before the onset of light pulses on
the last day; n = 15), and (e) total SD + Mel (18 L:06D with light pulses + 10 days
melatonin exposure including the 72 h of sleep deprivation; n= 15). Light:Dark cycle
used was applied during 72 h for each group. In the graphs, black dots represent the time
fish spent in the stimulus side and filled lines represent trends to the stimulus side. For
further details of the results of statistical analysis see Results section.
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Fig. 4. Time spent on the stimulus side of the tank during the 20 trials when the stimulus
was presented on random in an appetitive conditioning task using social stimulus as a
reward. Five groups were tested: (a) control (12 L:12D; n = 10), (b) partial SD (18 L:06D;
n = 15), (c) total SD (18 L:06D with light pulses; n = 15), (d) total SD + Eth (18 L:06D
with light pulses + 60 min ethanol exposure before the onset of light pulses on the last
day; n= 15), and (e) total SD +Mel (18 L:06D with light pulses + 10 days melatonin
exposure including the 72 h of sleep deprivation; n= 15). Light:Dark cycle used was
applied during 72 h for each group. In the graphs, black dots represent the time fish spent
in the stimulus side and filled lines represent trends to the stimulus side. For further
details of the results of statistical analysis see Results section.
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(b) alternating sides, and (c) random sides of the tank. Fifteen fish from
each of the 5 groups (control, Partial SD, Total SD, Total SD + Eth,
Total SD + Mel) were presented images as described above. The
random side presentation condition was not applied to the control
group. For the one side only presentation condition, half of the ex-
perimental fish received the stimulus on the left side and half on the
right side of the tank to control for side bias. We expected that when
images were presented only on one side, zebrafish would prefer to stay
on the stimulus presentation side. In contrast, when images were pre-
sented on alternating sides, zebrafish were expected to learn to shuttle
back and forth due to the rewarding nature of the stimulus, allowing the
quantification of learning performance. Similarly, when images were
presented on random sides, we expected zebrafish to prefer to stay on
the side of the stimulus presentation but will be unable to anticipate the
location of the next stimulus presentation (Pather and Gerlai, 2009).

After being introduced to the testing tank, experimental fish were
shown a blank screen for 2 min (habituation period). An image of
conspecifics was subsequently presented for 30 s always starting on the
left side of the tank followed by an interval of 60 s without the stimulus
on both screens, henceforth referred to as the inter stimulus interval
(ISI). The presentation protocol (stimulus + ISI) was repeated 20 times
with subsequent images presented either on the same side, alternating
sides, or random sides depending on the presentation condition.
Therefore, there were a total of 20 stimulus presentations and 20 ISI.
Fish were tested individually and their behavior was recorded using a
handycam (Sony Digital Video Camera Recorder; DCR-SX45) positioned
1.5 m away from the front of the testing tank. The behavioral tests were
conducted between 9 am and 4 pm.

2.6. Behavioral analysis

The video recordings were analyzed using ZebTrack, a video
tracking software developed in MatLab, previously described by
Pinheiro-da-Silva et al. (2017). We quantified the amount of time
zebrafish spent on each side of the tank during the 30 s stimulus pre-
sentation and during the 60 s ISI for all 20 trials. We also analyzed other
behavioral parameters including average speed, maximum speed, total
distance traveled and freezing.

2.7. Statistics

To apply inferential statistics, we first evaluated the data using an
exploratory analysis in consideration of potential problems, such as
outliers, heterogeneity of variance, normality, zero inflation, colli-
nearity and variable independency, as suggested by Zuur et al. (2010).

To develop a model of time spent on the correct side of the tank
(response variable) and the explanatory variable (stimulus or ISI trials
and treatments), we used a mixed effects model analysis for long-
itudinal data. The term longitudinal is related to repeated measures of a
response variable over time (Zuur et al., 2010). The mixed model pre-
sent random effect factors (represented by the variation within zebra-
fish behavior), fixed effect factors (represented by the influence of the
explanatory variables: stimulus trials and groups) and error.

The data used on the model was “time on each side during the sti-
mulus presentation”, ranging from 1 to 20, and the different experi-
mental groups. The response variable was calculated based on the time
probability values (pi), in relation to the total stimulus presentation
time (ni). In this model, i represents any one of the 20 stimulus pre-
sentations. Thus, it is reasonable to assume that yi follows the binomial
distribution error βin (ni, pi) with logit link function (according to Zuur
et al., 2010). Lastly, the formulation of the logistical model for prob-
ability pi can be represented below, as in Wood (2006):

⎜ ⎟
⎛
⎝ −

⎞
⎠

= +log
pi

pi
β β x

1 i0 1

pi = time probability on the correct stimulus side.
β0 = Model's linear coefficient.
β1 = Stimulus trial's angular coefficient.
χi = Trial.
To develop the mixed effects model, we used the glmmPQL function

from the MASS package (Venables and Ripley, 2003) of the R software
(Team, 2015). We decided to use this algorithm due to the abnormal
distribution and over dispersed nature of the residuals in the response
variable detected during the exploratory analysis. Moreover, the re-
sponse variable was discrete quantitative data that varied from 0 to 30
(stimulus trials) or 0 to 60 (ISI), which may present a binomial dis-
tribution error (according to Zuur et al., 2010). The glmmPQL function
was effective in this case because it presents mixed generalized models
with a ‘quasi’ distribution, adequate for over dispersed data.

For each model (one side only, alternating sides and random sides)
the p values for explanatory variables (stimulus or stimulus-to-be trials)
were obtained through the Wald chi-squared Test, with the “car”
package using R software (Fox and Weisberg, 2011). The post-hoc
comparisons between treatments, of each model, were made using the
Tukey test in “lsmeans” package (Lenth and Hervé, 2014).

Average speed, maximum speed, freezing and distance traveled
were also compared between the groups after pooling data from the 3
different stimulus presentation conditions using One-Way ANOVA. For
all comparison, the probability level considered for significance was

Table 1
Estimates of mixed effect model for time spent in the stimulus side during the stimulus presentation.

Explanatory variable Stimulus presentation scheme

One side only Alternate sides Random sides

Chi-squared p-value Chi-squared Pr(> chisq) Chi-squared Pr(> chisq)

Stimulus Trials 29.88 < 0.01* 23.57 < 0.01* 3.13 0.07
Groups 7.18 0.12 4.86 0.30 8.03 0.04*
Pairwise comparison lsmeans ± sem t-value p-value lsmeans ± sem t-value p-value lsmeans ± sem t-value p-value
Control vs Partial SD 0.29 ± 0.18 1.63 0.48 0.07 ± 0.06 1.10 0.80 – – –
Control vs Total SD 0.39 ± 0.18 2.15 0.21 0.10 ± 0.06 1.68 0.45 – – –
Control vs Total SD + Eth 0.03 ± 0.18 0.16 0.99 0.10 ± 0.06 1.60 0.49 – – –
Control vs Total SD + Mel 0.26 ± 0.18 1.40 0.62 0.002 ± 0.07 0.04 1.00 – – –
Partial SD vs Total SD 0.09 ± 0.18 0.52 0.98 0.03 ± 0.06 0.56 0.98 0.33 ± 0.17 1.94 0.22
Partial SD vs Total SD + Eth −0.26 ± 0.18 −1.47 0.58 0.03 ± 0.06 0.48 0.98 −0.10 ± 0.18 −0.58 0.94
Partial SD vs Total SD + Mel −0.04 ± 0.18 −0.19 0.99 −0.07 ± 0.07 −0.94 0.88 −0.05 ± 0.17 −0.27 0.99
Total SD vs Total SD + Eth −0.36 ± 0.18 −1.99 0.28 −0.004 ± 0.06 −0.08 1.00 −0.44 ± 0.17 −2.51 0.07
Total SD vs Total SD +Mel −0.13 ± 0.18 −0.71 0.95 −0.10 ± 0.07 −1.45 0.59 −0.38 ± 0.17 −2.26 0.12
Total SD + Eth vs Total SD +Mel 0.23 ± 0.18 1.25 0.72 −0.09 ± 0.07 −1.38 0.64 0.05 ± 0.17 0.33 0.98

SD: sleep deprivation, sem: Standard error of the mean, St Dev: Standard Deviation.
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ISI for the one side only stimulus scheme 
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Fig. 5. Analysis of zebrafish response during the 20 ISI when the stimulus was presented
on one side only. The (a) control, (b) partial SD and (d) total SD + Eth groups increased
the time spent on the stimulus-to-be side, while the total SD and total SD + Mel groups
spent a similar amount of time on both sides of the tank. For further details of the results
of statistical analysis see Results section.
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p < 0.05.

3. Results

Three types of behavior were analyzed: (1) response to stimulus
(behavior during the stimulus presentation period), (2) learning per-
formance (behavior during the ISI), and (3) locomotor responses (motor
responses averaged over the entire testing session).

Figs. 2, 3 and 4 show the amount time zebrafish spent on the sti-
mulus side of the tank during the stimulus presentation (i.e. response to
stimulus) for each experimental group that received the stimulus pre-
sentation on one side only, alternating sides and random sides,

respectively. The mixed model comparison showed that during the
stimulus presentation period, none of the experimental groups differed
in the amount of time zebrafish spent on the stimulus side of the tank
(Table 1). Post-hoc comparison tests (lsmeans) between groups for each
stimulus presentation condition are shown in Fig. 8. The Wald chi-
squared test indicates that with an increasing number of trials, all
groups spent an increasingly significant amount of time on the stimulus
side of the tank during the presentation period when the stimulus was
presented on only one side of the tank (GLMM, χ2 = 29.88, df = 1,
p < 0.01; Table 1), but the amount of time spent on the stimulus side
did not differ between groups (GLMM, χ2 = 7.18, df = 4, p = 0.12;
Table 1). Similarly, when the stimulus was presented on alternating
sides, with an increasing number of trials, all groups spent an increas-
ingly significant amount of time on the stimulus side (GLMM,
χ2 = 23.57, df = 1, p < 0.01; Table 1), but the time spent on the
stimulus side did not differ between groups (GLMM, χ2 = 4.86, df = 4,
p = 0.30; Table 1). In contrast, when the stimulus was randomly pre-
sented, the time spent on the stimulus side did not differ over sub-
sequent trials (GLMM, χ2 = 3.13, df = 1, p = 0.07; Table 1), however,
one of the groups exhibited a differ patter compared to the others
(GLMM, χ2 = 8.03, df = 4, p = 0.04; Table 1).

Figs. 5, 6 and 7 show the amount of time zebrafish spent on the side
of the tank that the stimulus will be presented next (henceforth referred
to as the “stimulus-to-be side) during the ISI for all groups receiving the
stimulus presentation on one side only, alternating sides and random
sides, respectively. Analysis of time spent on the stimulus-to-be side
over the 20 ISIs using the mixed model is shown in Table 2. Analysis
revealed that when the stimulus was presented on one side only or on
alternating sides, the total SD group spent less time on the stimulus-to-
be side compared to the control and partial SD groups. Post-hoc com-
parisons (lsmeans) are presented in Table 2 and Fig. 8, and indicate
statistical differences during the ISI for different stimulus presentation
conditions. The Wald chi-squared test indicates that with an increasing
number of ISI trials, zebrafish spent an increasingly significant amount
of time on the stimulus-to-be side and the amount of time spent on the
stimulus to-be side also differed between groups when the stimulus was
presented on one side only (trials: χ2 = 39.33, df = 1, p < 0.01;
groups: χ2 = 29.00, df = 4, p < 0.01; Table 2), alternating sides
(trials: χ2 = 31.08, df = 1, p < 0.01; groups: χ2 = 19.14, df = 4,
p < 0.01; Table 2), and random sides presentation scheme (trials:
χ2 = 4.36, df = 1, p = 0.03; groups: χ2 = 14.17, df = 4, p= 0.002;
Table 2).

Analysis of locomotor responses during the entire testing session
revealed that maximum speed was significantly higher for the partial
SD group compared to all other groups (One-Way ANOVA, F = 11.28
p < 0.001, Fig. 9a), while average speed was significantly higher for
the partial SD and total SD + Eth groups compared to the control group
(One-Way ANOVA, F = 12.31 p < 0.001, Fig. 9b). One-Way ANOVA
found no significant differences in freezing between the different
groups (F = 1.85 p = 0.12, Fig. 9c). The total distance traveled was
higher for the control, partial SD and total SD + Eth and lower for total
SD and total SD + Mel groups (One-WayANOVA, F = 11.71
p < 0.001, Fig. 9d).

4. Discussion

In the current study, we demonstrated that sleep deprivation im-
pairs learning performance in a spatial associative learning task in
zebrafish (Danio rerio). Although our partial sleep deprivation protocol
did not impair learning and memory, total sleep deprivation for 72
consecutive hours was shown to interfere with behavioral performance
in the learning task. However, when total sleep deprived zebrafish were
treated with either melatonin or ethanol prior to behavioral testing, the
learning impairment was rescued. Our results demonstrate that ethanol
(a single acute exposure) and melatonin (10 day chronic exposure)
treatment was sufficient to counteract the learning impairment induced

Fig. 6. Analysis of zebrafish response during the 20 ISI when the stimulus was presented
on alternate sides. The (a) control, (b) partial SD and (d) total SD + Eth groups increased
the time spent on the stimulus-to-be side, while the total SD and total SD + Mel groups
spent a similar amount of time on both sides of the tank. For further details of the results
of statistical analysis see Results section.
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Fig. 7. Analysis of zebrafish response during the 20 ISI when the stimulus was presented
on random sides. The (a) control, (b) partial SD and (d) total SD + Eth groups increased
the time spent on the stimulus-to-be side, while the total SD and total SD + Mel groups
spent a similar amount of time on both sides of the tank. For further details of the results
of statistical analysis see Results section.
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effect of sleep deprivation in zebrafish.
Our findings confirm previous studies by demonstrating that zeb-

rafish are capable of appetitive reinforcement-based learning in a spa-
tial alternation task (Pather and Gerlai, 2009; Williams et al., 2002), as
well as other associative learning tasks (Al-Imari and Gerlai, 2008;
Braubach et al., 2009; Chacon and Luchiari, 2014; Colwill et al., 2005;
Gómez-Laplaza and Gerlai, 2010; Karnik and Gerlai, 2012; Luchiari and
Chacon, 2013; Pittman and Lott, 2014; Santos et al., 2016; Yu et al.,
2006). We also showed that sleep deprivation did not impair behavioral
responses to the animated conspecific image, even when receiving al-
cohol or melatonin treatment (Figs. 2, 3 and 4).

The stimulus we used in our learning task was a computer animated
image of a zebrafish shoal. Zebrafish are a highly social species that
prefers swimming in groups called shoals (Pitcher, 1983), similar to
other shoaling fish species (Krause et al., 1996; Pollock et al., 2006).
Zebrafish recognize conspecifics and exhibit preference for groups with
similar characteristics. Shoaling may reduce predation risks, facilitate
foraging and boost reproductive success (Saverino and Gerlai, 2008;
Sison and Gerlai, 2011b). Qin et al. (2014) have previously shown that
live conspecifics (inside or outside the tank) are as equally effective as
animated computer images (2D or 3D) for inducing robust shoaling
behavior in zebrafish. Although we found a more robust shoaling re-
sponse when the stimulus was presented on one side only compared to
when the stimulus was presented on alternating sides, our results show
that fish from all experimental groups responded to the stimulus in a
similar manner and exhibited a preference for the stimulus presentation
(Fig.8).

Although behavioral responses to the conspecific image did not
differ between groups, sleep deprivation significantly altered locomotor
parameters (Fig. 9). Partial SD animals and the total SD + Eth animals
showed higher average speed and total distance traveled suggesting
increased activity during the tests, while the total SD and total SD
+ Mel were similar to the control group. These findings are similar to
those reported by Yokogawa et al. (2007) and Pinheiro-da-Silva et al.
(2017), who showed that short-term sleep deprivation reduced activity
levels, whereas prolonged SD increased locomotor activity, similar to
our partial and total sleep deprivation groups.

Recurrent sleep deprivation increases sleep debt which has physical
and psychological implications: simple mental tasks may become more
difficult and higher cognitive processing becomes compromised (Alhola
and Polo-Kantola, 2007; Killgore, 2010; Prince and Abel, 2013; Raidy
and Scharff, 2005; Yu et al., 2006), including learning and memory. The
spatial associative learning task used in this study consisted of a 30 s
stimulus presentation followed by a 60 s inter stimulus interval (ISI).
Zebrafish exhibited a preference for the stimulus demonstrated by an
increased in the amount of time spent near the conspecific image during

the presentation period. However, we expected zebrafish to learn the
pattern of presentation and anticipate where the stimulus would appear
next, and respond by moving to the “stimulus-to-be side” during the
next ISI. When the stimulus was consistently presented on one side
only, the control, partial SD and total SD + Eth groups increased the
time spent on the stimulus side during both the presentation period and
the ISI, a response not observed in the total SD group (Figs. 5 and 8d).

By presenting the stimulus on alternating sides, we examined the
fish's ability to learn a slightly more complex presentation pattern.
Fig. 6 shows that animals learned the presentation pattern by sig-
nificantly increasing the time they spent on the stimulus-to-be side by
the second half of the trials. The results indicate that the control and
partial SD groups learned to anticipate the presentation of the stimulus
on the correct side of the tank. In contrast, zebrafish in the total SD
group were unable to learn to anticipate where the next stimulus pre-
sentation would appear. Notably, we found that when fish in the total
sleep deprivation condition were treated with either ethanol or mela-
tonin, there was an increase in learning performance.

By presenting the stimulus on random sides, we confirmed that the
increased time zebrafish spent near the “stimulus-to-be side” did not
simply reflect a side bias. As expected, since the presentation of the
stimulus does not predict the location of the next stimulus presentation,
none of the groups exhibited a preference for the stimulus-to-be side
during the ISI (Fig. 7). Overall, our results are in line with Pather and
Gerlai (2009), which suggests associative learning performance in this
task is driven by an animal's motivation to join groups.

Although the total SD groups (total SD, total SD + Eth, total SD
+ Mel) perceived the conspecific images as rewarding and showed
preference for the stimulus, we observed that total SD decreased total
distance traveled, as shown in Fig. 9d, similar to the effects of SD on
rest-activity rhythm (Tobler et al., 1998; Moura et al., 2017). Sleep
deprivation was also shown to cause changes in daytime locomotor
activity as well as enhance arousal thresholds on the following day
(Zhdanova et al., 2001).

In addition to the negative effects of total SD on learning perfor-
mance, we also examined the effects of two drugs known to affect sleep:
ethanol and melatonin. Ethanol has been shown to induced behavioral
changes in zebrafish (Tran et al., 2015), impair coordination and
swimming, as well as alter fear and anxiety-like responses (Gerlai et al.,
2000).

We found that the total SD + Eth group exhibited a preference for
the stimulus and learned to anticipate the presentation of the stimulus
when it was presented on one side only and on alternating sides, similar
to the control group. Ethanol is classified as a depressant (Charness
et al., 1989) with sedative effects (Roehrs et al., 1999) and exposure on
the last night of sleep deprivation may have promoted sleep-like

Table 2
Estimates of mixed effect model for time spent in the stimulus-to-be side during the inter stimulus interval (ISI).

Explanatory variable Stimulus presentation scheme

One side only Alternate sides Random sides

Chi-squared p-value Chi-squared p-value Chi-squared p-value

Stimulus Trials 39.33 < 0.01* 31.08 < 0.01* 4.36 0.03*
Groups 29.00 < 0.01 19.14 < 0.01* 14.17 0.002*
Pairwise comparison lsmeans ± sem t-value p-value lsmeans ± sem t-value p-value lsmeans ± sem t-value p-value
Control vs Partial SD −0.001 ± 0.09 −0.01 1.00 0.05 ± 0.05 1.01 0.84 – – –
Control vs Total SD 0.33 ± 0.09 3.57 0.005* 0.24 ± 0.05 4.19 0.001* – – –
Control vs Total SD + Eth −0.13 ± 0.08 −1.50 0.56 0.09 ± 0.05 1.74 0.42 – – –
Control vs Total SD + Mel 0.13 ± 0.09 1.47 0.58 0.11 ± 0.06 1.69 0.44 – – –
Partial SD vs Total SD 0.33 ± 0.09 3.58 0.005* 0.18 ± 0.05 3.17 0.02* 0.37 ± 0.14 2.51 0.07
Partial SD vs Total SD + Eth −0.13 ± 0.08 −1.49 0.57 0.04 ± 0.05 0.71 0.95 −0.14 ± 0.15 −0.95 0.77
Partial SD vs Total SD + Mel 0.13 ± 0.09 1.48 0.57 0.05 ± 0.06 0.81 0.92 −0.04 ± 0.14 0.31 0.99
Total SD vs Total SD + Eth −0.46 ± 0.09 −5.06 < 0.0001* −0.14 ± 0.05 −2.50 0.10 −0.52 ± 0.15 −3.45 0.006*
Total SD vs Total SD +Mel −0.19 ± 0.09 −2.03 0.26 −0.13 ± 0.06 −1.98 0.28 −0.42 ± 0.14 −2.89 0.02*
Total SD + Eth vs Total SD +Mel 0.27 ± 0.09 2.94 0.03* 0.01 ± 0.06 0.19 0.99 0.10 ± 0.15 0.66 0.91
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behavior and may have improved memory consolidation. This hy-
pothesis is supported by Roehrs and Roth (2001) and Williams and
Salamy (1972) who found that ethanol changes sleep structure, in ad-
dition to its sedative and sleep-promoting effects. Similarly, studies in
humans have shown that an ethanol dose of 0.16 g/kg reduced sleep
latency and increased sleep time (Roehrs and Roth, 2001; Stone, 1980).
While zebrafish and humans are phylogenetically distant, it is worth
exploring potential links between sleep and ethanol consumption.

Studies in humans have shown that an ethanol dose of 0.16 g/kg
reduced sleep latency and increased sleep time (Roehrs and Roth, 2001;
Stone, 1980). While zebrafish and humans are phylogenetically distant,
it is worth exploring potential links between sleep and ethanol con-
sumption. However, we should take into account that ethanol is a drug
and (1) may cause tolerance and dependence (Chacon and Luchiari,
2014; Ford and Kamerow, 1989; Weissman et al., 1997), (2) under

uncontrolled use results in the disruption of sleep architecture and
continuity (Brower, 2003), (3) chronic heavy consumption leads to
neural damage (Chacon and Luchiari, 2014), (4) there is no effective
treatment for alcoholism (Vengeliene et al., 2008) and (5) sleep dis-
orders may persist even after the cessation of ethanol consumption
(Drummond et al., 1998). Therefore, although we report that alcohol
exposure may have allowed the learning performance in sleep deprived
fish, additional research still needs to be conducted.

In contrast to the effects of ethanol on sleep deprivation, we found
that melatonin treatment did not completely rescue the learning im-
pairment. Melatonin is a pineal-produced hormone shown to promote
sleep and entrain circadian rhythmicity under appropriate conditions
(Brzezinski et al., 2005; Zhdanova et al., 2001). We treated sleep de-
prived fish with melatonin for 10 days before the test (total SD + Mel)
and although this group responded to the stimulus presentation in way

Fig. 8. Confidence intervals for LSmeans for time spent on each side of the test tank during the 20 trials when the stimulus was presented on (a) one side only, (b) alternate sides and (c)
random sides in the appetitive conditioning task, and confidence interval LSmeans for zebrafish response during the 20 ISI when the stimulus was presented on (d) one side only, (e)
alternate sides and (f) random sides of the appetitive conditioning task. The groups tested were kept for 72 h under different light:dark cycles and then associative learning took place. The
five groups were: control (12 L:12D; n= 10 for each presentation scheme), partial SD (18 L:06D; n = 15 for each presentation scheme), total SD (18 L:06D with light pulses; n = 15 for
each presentation scheme), total SD + Eth (18 L:06D with light pulses + 60 min ethanol exposure before the onset of light pulses on the last day; n = 15 for each presentation scheme),
and total SD + Mel (18 L:06D with light pulses + 10 days melatonin exposure including the 72 h of sleep deprivation; n = 15 for each presentation scheme). For further details of the
results of statistical analysis, see Tables 1 and 2.
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comparable to the other groups (Fig.8), learning performance was
slightly different from the control and partial sleep deprivation groups.
Studies have shown that exogenous melatonin treatment facilitates
daytime and nighttime sleep, without altering sleep structure and
duration (Arendt and Skene, 2005; Gandhi et al., 2015; Rajaratnam
et al., 2004; Stone et al., 2000). Our findings suggest that exogenous
melatonin administration may have promoted sleep in zebrafish that
were undergoing total SD which may have contributed to the observed
response to the conspecific stimulus and learning performance (Fig. 3e).

However, melatonin treatment did not alter behavioral parameters
such as average speed, freezing and total distance traveled (Fig. 9).
Light is known to suppress melatonin synthesis (Scheer and Czeisler,
2005)and is an important in the regulation of sleep (Bunnell et al.,
1992; Lavie, 2001). Although Rawashdeh et al. (2007) have shown that
melatonin can suppress memory consolidation during learning tasks,
our results support the effects of melatonin as a sleep promoter that, for
this reason, may have allowed learning.

Finally, although we have previously shown that our sleep depri-
vation protocol can suppress sleep-like behavior in zebrafish (Pinheiro-
da-Silva et al., 2017), the effects of light on circadian rhythms cannot be
ruled out. Light has direct masking effects on behavior (Colwell et al.,
1990; Weger et al., 2011), can disrupt the molecular clock through
light-dependent mechanisms (Cahill, 2002; Kaneko et al., 2005; Pando
and Sassone-Corsi, 2002) and is a known cue for the entrainment of
circadian rhythms (Armstrong, 1989; Duffy and Wright, 2005; Skene
et al., 1999; Wang et al., 2014; Whitmore et al., 2000). For example, the
delayed onset of darkness (e.g. extended light phase) can phase-shift the
circadian rhythm (Honma et al., 1987; Minors et al., 1991; Tamai et al.,
2007) and disruptions to the circadian rhythm has been shown to im-
pair learning (Drummond et al., 2000; Graves et al., 2003; Killgore,
2010; Ruskin et al., 2004). Similarly, light can also interfere with the
circadian regulation of melatonin synthesis (Armstrong, 1989; Bunnell
et al., 1992; Lima-Cabello et al., 2014), which has also been implicated
in learning and memory (Arendt, 2003; Mintz et al., 1998; Rawashdeh
et al., 2007). Although we and others have shown that constant light

and dark conditions does not abolish circadian activity in zebrafish
(Hur et al., 2012; Moura et al., 2017; Sigurgeirsson et al., 2013), the
direct effects of light on behavior and circadian rhythms should be
noted.

Although zebrafish have recently been used as an effective animal
model for studying learning and memory, the effect of sleep deprivation
on learning performance has been unknown in this species. In this ex-
periment, we utilized a previously validated protocol to quantify the
effects of SD on cognitive performance in a spatial associative learning
task. We found that totally sleep deprived animals exhibited reduced
cognitive performance.

Behavioral studies represent an important method for identifying
neuropathology. The finding that SD impairs learning performance
implies that sleep deprivation affects brain function in fish similar to
mammals (Graves et al., 2003; Rasch and Born, 2013; Ruskin et al.,
2004). Therefore, our results show that the zebrafish represents a useful
vertebrate model that can be used to investigate the molecular me-
chanisms regulating sleep, learning, and their interaction. Although
research on the effects of sleep deprivation on cognitive function in
zebrafish is still in its infancy, we now demonstrate the negative effects
of total SD on a simple and complex learning task, as well as the effects
of alcohol and melatonin exposure on learning performance in sleep
deprived fish. Overall, our results reinforce the utility of zebrafish as a
useful animal model for the proposed analysis.
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Fig. 9. Behavioral parameters analyzed for (a)
maximum speed swimming, (b) average speed
swimming, (c) freezing behavior and (d) total
distance traveled by the zebrafish. Five groups of
fish were kept for 72 h under different ligh:dark
cycles and then tested for associative learning.
The parameters presented correspond to the be-
havior of fish for 30 min during which the
learning task had been tested. The groups tested
were: control (12 L:12D; n= 30), partial SD
(18 L:06D; n= 45), total SD (18 L:06D with light
pulses; n = 45), total SD + Eth (18 L:06D with
light pulses + 60 min ethanol exposure before
the onset of light pulses on the last day; n = 45),
and total SD + Mel (18 L:06D with light pulses
+ 10 days melatonin exposure including the 72 h
of sleep deprivation; n= 45). Data were analyzed
by tracking software (ZebTrack). (*) and different
letters indicate statistical significance, One-Way
ANOVA p < 0.05).
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