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Ana C. Luchiari, Diana M. Chacon, and Jessica J. Oliveira
Universidade Federal do Rio Grande do Norte

The present study tested the effects of alcohol on seeking behavior and memory in the
Siamese fighting fish Betta splendens. We tested behavior using 5 acohol concentra-
tions: .00%, .10%, .25%, 1.00%, and 1.50% (vol/vol%). Drug seeking was tested usng
a conditioned place preference (CPP) paradigm, with a single 20-min exposure to acohal. The
effect of acohol on memory was tested using a T-maze protocol with acute (20 min/day
for 5 days) and chronic (20 min/day for 20 days) acohol exposure and after alcohol
withdrawal (20 min/day alcohol exposure for 15 days + water exposure). In the CPP
test, the higher acute alcohol doses (1.00 and 1.50%) induced seeking behavior, but the
lower (.10%) and medium (.25%) doses did not. When the fish were tested after 37 days
of alcohol exposure, the higher-dose groups still exhibited seeking behavior, indicating
that these doses may have caused drug addiction. In the memory test, we observed a
dose-dependent pattern with both the acute and chronic treatments. High alcohol doses
(1.00 and 1.50%) impaired memory, and low acohol doses (.10%) caused an antici-
patory response. The withdrawal group did not exhibit differences in memory, sug-
gesting some capacity for recovery. The low alcohol doses did not impair memory or
cause drug seeking, whereas the high doses affected memory and caused prolonged
seeking behavior. Therefore, adual effect of alcohol was corroborated by our data, and
Betta splendens may be an adequate animal model for high-throughput screening with
alcohal.
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Among substances of abuse, alcohol is the
most widely consumed and responsible for nu-
merous behavioral alterations, including psy-
chological addiction (Givens & McMahon,
1995) and memory loss (Uecker & Nadel,
1996). Addiction is a complex psychiatric dis-
order that involves compulsive drug-seeking
behavior even after prolonged abstinence
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(Brennan et al., 2011). Drug-induced condi-
tioned place preference (CPP) is a noninvasive
and simple procedure that can be used to study
the reinforcing properties of drugs of abuse
(Darland & Dowling, 2001; Ninkovic & Bally-
Cuif, 2006; Bretaud et al., 2007; Kily et al.,
2008). The loss of control of behavior, referred
to as compulsive drug seeking, is associated
with increased dopaminergic transmission in
the mesolimbic system (Rink & Wullimann,
2002). However, the genetic and neuroethol ogi-
cal bases of seeking behavior require athorough
understanding to develop pharmacological and
psychological therapies for the treatment of
drug seeking/addiction.

In addition to alcohol’s addiction potential,
impairments in memory are a common symp-
tom when the drug is taken in high amounts,
referring to the loss of the ability to record
information. Indeed, heavy drinking can cause
extensive effects on the brain, from ssimple slips
in memory to a condition of permanent demen-
tia called Wernicke Korsakoff syndrome (Sav-
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age, Candon, & Hohmann, 2000). Several stud-
ies (Fuller & Hiller-Sturmhdfel, 1999; Vengdiene,
Bilbao, Molander, & Spanagel, 2008; Gerlai,
Chatterjee, Pereira, Sawashima, & Krishnan-
nair, 2009) indicate the need to study various
alcohol concentrations to determine dose-effect
functions and the way the drug acts within the
brain (Gerlai et al., 2009). However, studies that
evaluate the effects of low-dose acohol on
seeking behavior and cognitive responses are
lacking.

Although research that uses rodents and pri-
mates that are exposed to acohol facilitates
human trandation, the complexity of mamma-
lian neural mechanisms makes such studies dif-
ficult. The teleost fish exhibits learning and
memory performance that is comparable to
mammals (Odling-Smee & Braithwaite, 2003;
Yoshida & Kondo, 2012). These fish also share
organizational and functional characteristics of
the central nervous system with other verte-
brates (Kaslin & Panula, 2001; Holzschuh, Ryu,
Aberger, & Driever, 2001; Teraoka et al., 2004,
Kaslin, Nystedt, Ostergard, Peitsaro, & Panula,
2004; McLean & Fetcho, 2004; Mueller, Ver-
nier, & Wullimann, 2004; Faraco et al., 2006;
Prober, Rihel, Onah, Sung, & Schier, 2006;
Yokogawa et al., 2007; Yoshida & Hirano,
2010) but have simpler neural pathways, mak-
ing them adequate models for the study of brain
mechanisms (Gerlal, Lahav, Guo, & Rosenthal,
2000; Gerlai, 2002; Pather & Gerlai, 2009;
Souza & Tropepe, 2011; Karnik & Gerlai,
2012). Furthermore, fish can learn and remem-
ber environmental signals and events (Odling-
Smee & Braithwaite, 2003), processes that can
be affected by the actions of drugs of abuse,
such as acohol.

The fish Betta splendens, which is native to
small streams and lakes in Southeast Asia, uti-
lize advanced spatial/motor memory to recog-
nize locations where food is available, locate
conspecifics (opponents and mates), and avoid
predators (Braddock & Braddock, 1955; Roit-
blat, Tham, & Golub, 1982; Verbeek, Iwamoto,
& Murakami, 2008). Such ecological and social
features appear to have favored the memory
ability of this species. Therefore, we used B.
splendens as a model to better understand the
effects of alcohol on performance in two mem-
ory paradigms. conditioned place preference
(CPP) and spatiadl memory in a T-maze. Our
first @m was to evaluate seeking behavior

caused by alcohol using a CCP model, in which
alcohol was used as the reward. Our second aim
was to study the effects of alcohol on memory,
in which alcohol was not associated with the
task but affected how the animals performed it.

M ethod
Animals

The present study used adult Betta splendens
obtained from a local fish farm and kept in
storage tanks (50 X 40 X 30cm, 50 L, 1 fish/L)
in the Fish Laboratory (Departamento de Fisio-
logia, UFRN, Natal, Brazil). The aquarium wa-
ter was maintained at 28 °C, with constant ox-
ygenation and 30% water exchange every 10
days. The photoperiod was set at a 12-hr light—
dark cycle. The animals were fed daily with a
commercial diet (38% protein and 4% fat, Nu-
tricom Pet) ad libitum. Only female fish were
used because they are less aggressive and more
explorative in the absence of males (Giannec-
chini, 2010). All of the animal procedures were
performed with permission from the Ethical
Committee for Animal Use of the Universidade
Federal do Rio Grande do Norte (CEUA 025/
2012).

Apparatus and Procedures for
Seeking-Behavior Test

The experimental design involved the evalu-
ation of seeking behavior induced by different
doses of alcohol with acute treatment in a con-
ditioned place preference paradigm (CPP)
adapted from the procedures used by Brennan et
a. (2011) and Mathur, Berberoglu, and Guo
(2011).

The testing apparatus was a 15 L agquarium
that was divided in haf with an opaque glass
divider (shuttle box, 40 X 25 X 20 cm). The
bottom of each side of the tank had different
visual cues. One side was completely white, and
the other had ablack and white grid (2 X 2 cm).
The lateral walls of the tank were covered in
white. Initial preference was determined for
each fish by individually introducing them in
the shuttle box. After a 2-min acclimation pe-
riod, behavior was recorded from above using a
Sony Digital Video Camera Recorder (DCR-
SX45) for 5 min. The videos were analyzed
using the ANY-maze™ Video Tracking Sys-
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tem, which recorded the time spent on each side
of the shuttle box. The side where the fish spent
more than 60% of the total time was considered
the preferred side. The fish were maintained in
individual aguaria (700 ml) that allowed visual
contact between them (to avoid isolation stress)
until the conditioning test.

The day after the initial determination of
place preference, the fish were exposed to alco-
hol in a single 20-min period (acute exposure)
on the least preferred side of the aguarium. We
used a smaller aguarium (20 X 20 X 10 cm,
2 L) that was placed inside the shuttle box that
allowed the fish to see the bottom. The fish were
then restricted to the preferred side for 20 minin
freshwater. Regardless of the initial preference,
the fish were always first exposed to alcohol in
the least preferred place and then placed in
freshwater on the preferred side. This procedure
ensured that the fish were exposed to the drug
only in the least preferred location. Following
this procedure, each fish was removed to fresh-
water in individual aguaria (700 ml).

Alcohol concentrations of .10%, .25%,
1.00%, and 1.50% (vol/vol%) were achieved by
diluting 99.9% alcohol P.A. in water. The con-
trol group was always kept in .00% alcohol
(n = 9). Fish that were subjected to acute alco-
hol treatment received a cohol only the day after
the initia determination of place preference
(.10%, n = 9; .25%, n = 8; 1.00%, n = 10;
1.50%, n = 10).

To define the reinforcing effects of alcohoal,
the place preference of each fish was tested on
the following 5 days and on Day 37 &fter the
single exposure. The animals were recorded for
5 min to observe possible changes in prefer-
ence. All fish tracking was performed using the
ANY-maze™ Video Tracking System.

Apparatus and Procedures for
Memory Test

The experimental design involved evaluation
of the effects of different alcohol doses on per-
formance in a spatial memory task. We used a
simple T-maze without cues. The apparatus was
made of polyvinyl chloride, with an exit only in
one arm. The fish had to remember whether the
left or right arm led to the exit. The apparatus
was placed inside a larger tank (50 X 50 X
30 cm) that had al of its walls covered with
black fabric to avoid external interference.

Three experimental groups were tested: (@)
acute treatment (alcohol exposure for 20 min/
day during the 5 days of the test; n = 12; the
fish were under the effects of alcohol through-
out the test); (b) chronic treatment (alcohol ex-
posure for 20 min/day for 15 days before + 5
days of the test; n = 12; the animas were
exposed to acohoal at least 2 h before beginning
the task to ensure that they were not under the
effects of alcohol during the test, according to
acohol measurements by Tran & Gerlai, 2013);
(c) withdrawal treatment (the fish were pre-
treated with alcohol for 20 min/day for 15 con-
secutive days, and after 2 days without alcohol
exposure, the task began; n = 12).

The following alcohol doses were used: .00%
(contral), .10%, .25%, 1.00%, and 1.50%. Al-
cohol exposure was performed every evening
by transferring the fish to an aguarium (20 X
20 X 10 cm, 2 L) that contained the dose
previously prepared for the specific treatment.
Alcohol exposure always lasted 20 min. After-
ward, the fish were returned to their residence
aquarium with clean freshwater until the next
alcohol exposure. The control group was moved
to another aquarium with only water during the
same period of alcohol exposure.

For the memory test, the fish were individu-
ally placed in the maze, and the time to exit was
recorded. The animals were not fed for 2 days
before the test phase. During the 5 days of
testing in the T-maze, the fish received only one
adult Artemia salina as areward for exiting the
maze. No other food was supplied during this
period.

While performing the memory tests, we also
determined whether the alcohol doses interfered
with locomotion, which could affect perfor-
mance in the maze. Ten female B. splendens
were exposed to acohol for 20 min at each
concentration (.00%, .10%, .25%, 1.00%, and
1.50%) and individually placed in tanks (40 X
25 X 20cm, 15 L), and swimming behavior was
recorded. The average and maximum swim
speeds were analyzed for 10 min using the
ANY-maze™ Video Tracking System.

Statistical Analysis

For the seeking-behavior test (CPP), the per-
centage of time spent on each side of the shuttle
box was compared between initial preference
and the days after alcohol exposure using
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repeated-measures analysis of variance
(ANOVA) because the datamet the criteriain the
normality and equa variance tests. Significant ef-
fects and interactions in the ANOVA were fol-
lowed by the Student-Newman-Keuls post hoc
test. A probability level of p < .05wasused asan
index of dtatistical significance.

For the memory test, performance on the test
days was compared using repeated-measures
ANOVA for chronic treatment and the Fried-
man repeated-measures ANOVA for acute and
withdrawal treatments, depending on the nor-
mality and homoscedasticity of the data. The
performance of the fish with different treat-
ments was compared using one-way ANOVA
for chronic treatment and the Kruskal-Wallis
test for acute and withdrawal treatments to de-
termine differences in the effects caused by the
different alcohol doses. The total time to exit
the maze (sum of the 5 days) was aso analyzed
using ANOVA and the Kruskal-Wallistest. The
average and maximum swim speed data were
compared using the Kruskal-Wallis test. In all
cases, p < .05 was used as the reference value.

Results
Seeking-Behavior Test

Acute alcohol exposure dose-dependently
changed the fish’sinitial preference (see Figure
1). We found that 25 fish initialy chose the
white side of the shuttle box, and 21 fish pre-
ferred the grid side. The control group (.00%)
did not exhibit a change in preference through-
out the test (repeated-measures ANOVA, F =
1.96, p = .09; Figure 1a). The percentage of
time spent on the nonpreferred side of the shut-
tle box was 35.7% = 9.7% in the initia pref-
erence test. During the 5 days after manipula-
tion (instead of alcohol exposure), the
percentage of time spent on the nonpreferred
side did not increase by more than 46%.

Fish that were exposed to .10% alcohol
changed their initial preference only on Day 3
after alcohol exposure (repeated-measures
ANOVA, F = 2.63, p = .032; Figure 1b), but
we did not observe differences on the other
days. With .25% alcohol, the fish’'s preference
differed between Days 2 and 37 but not on the
other days (repeated-measures ANOVA, F =
2.67, p = .027; Figure 1c). Fish that received
alcohol at a concentration of 1.00% changed

their initial preference on all days after alcohol
exposure, with the exception of Day 2 (repeat-
ed-measures ANOVA, F = 351, p = .01; Fig-
ure 1d). The group that was exposed to 1.50%
alcohol completely changed their initia prefer-
ence and remained in the noninitially preferred
compartment on the 5 days postal cohol and Day
37 (repeated-measures ANOVA, F = 893, p <
.001; Figure le).

Memory Test

Acute treatment. All of the groups exhib-
ited a decrease in the time to exit the T-maze
throughout the test days (Friedman test; .00%:
x? = 231, p = .001; .10%: x%> = 354, p =
.001; .25%: x* = 15.0, p = .005; 1.00%: x° =
30.1, p < .001; 1.50%: x> = 29.7, p < .001;
Figure 2a). The comparison between the acute
doses on the same test daysindicated significant
difference between groups on Day 1 (Kruskal-
Wallis, H = 19.6, p < .001), Day 3 (Kruskal-
Wallis, H = 17.8, p < .001), and Day 5
(Kruskal-Wallis, H = 17.3, p = .002). On Day
3, fish that received 1.50% alcohol treatment
exhibited the longest time to exit the maze,
whereas on Day 5, fish that were exposed to
.10% alcohol exited the maze faster than the
other groups (Figure 2a).

Chronic treatment. All of the groups ex-
hibited a decrease in the time to exit the maze
throughout the test days (repeated-measures
ANOVA; .00%: F = 63.6, p = .001; .10%: F =
16.2, p = .001; .25%: F = 14.92, p < .001;
1.00%: F = 5.5, p = .013; 1.50%: F = 26.6,
p < .001; Figure 2b). The comparison between
doses reveaed differences in task performance
on Day 1 (ANOVA, F = 3.3, p = .02) and Day
5 (ANOVA, F = 4.1, p = .006) but not Day 3
(ANOVA, F = 217, p = .084). On both Days 1
and 5, the .10% alcohol group was the fastest to exit
the maze, and the 1.50% acohol group was the
dowes.

Withdrawal treatment. All of the groups
exhibited a decrease in the time to exit the maze
during the test days (Friedman test; .00%: x* =
16.8, p = .002; .10%: x> = 22.9, p < .001;
25%: x® = 31.7, p < .001; 1.00%: x*> = 10.7,
p = .03; 1.50%: x* = 29.7, p < .001; Figure
2c). The comparisons between doses on the
same test day showed that the fish that were
withdrawn from 1.00% alcohol were the slow-
est to accomplish the task on Day 5 (Kruskal-
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Figure 1. Conditioned place preference induced by acute acohol exposure. The bars
indicate the mean = SD percentage of time spent on the less preferred side in a shuttle box
(black and white grid vs. total white). Initial preference was tested before acute alcohol
exposure (white bars), and Days 1-5 and 37 indicate the time spent on the less preferred side
after acohol exposure. The fish were exposed only once to different alcohol doses (control,
n =9 .10%, n = 9; .25%, n = 8; 1.00%, n = 10; 1.50%, n = 10) for a 20-min period on
the less preferred side. The dashed line represents the percentage used (60%) to indicate
preference. Same |etters above the bars indicate no significance, and different letters or the
asterisk (*) indicates significance (repeated-measures ANOVA and Friedman test, p < .05).

Wallis, H = 18.0, p = .001; Figure 2c). The
total time spent inside the maze during all 5
days of testing is shown in Figure 2d. A signif-
icant difference was found between doses with
acute and chronic treatment (acute, Kruskal-
Wallis, H = 33.2, p < .001; chronic, repeated-
measures ANOVA, F = 6.68, p < .001), in
which the groups that were exposed to the
higher doses exhibited the longest time to exit
the maze. The withdrawal groups exhibited no
differences among doses (Kruskal-Wallis, H =
3.3, p = .49). The comparison between trea-
ments (acute, chronic, and withdrawal) using the
same acohol dose reveded differences between

chronic and withdrawal treatment at alcohol con-
centrations of .10% (ANOVA, F = 3.38,p = .03)
and .25% (ANOVA, F = 4.15, p = .03), whereas
the acute alcohol doses of 1.00% and 1.50% dif-
fered from the chronic and withdrawal treatments
(1.00%, Kruskd-Wallis, H = 17.6, p = .001;
1.50%, ANOVA, F = 7.78, p = .002).

Locomotor Activity

The acohol treatments did not ater swim-
ming activity. The average speed was .01 *=
.002 m/s in the .00% group, .01 = .005 m/sin
the .10% group, .02 = .014 m/s in the .25%
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Figure 2. The time to exit the maze in a motor memory task in Betta splendens. The fish
were exposed to alcohol concentrations of .0% (control), .10%, .25%, 1.00%, and 1.50% with
three different treatment regimens: (a) acute treatment (alcohol exposure before testing in
the maze; n = 12), (b) chronic treatment (al cohol exposure for 15 days before and during
the days of testing; n = 12), and (c) withdraw treatment (alcohol exposure for 15 days
before the tests but not during the tests; n = 12). The bars show the mean time to exit the
maze on Days 1, 3, and 5 out of 5 days of training. (d) Total time that the fish remained
inside the maze for 5 consecutive days. Different lowercase |etters or asterisks () indicate
significant differences between alcohol doses with the same treatment (one-way ANOVA,

p < .05).

group, .01 + .004 m/s in the 1.00% group, and
.01 £ .004 m/sin the 1.50% group. No signif-
icant difference in average swim speed was
found between groups (Kruskal-Wallis, H =
7.2, p = .12). The maximum speed was .29 =+
.08 m/s in the .00% group, .24 = .17 m/sin the
.10% group, .35 = .4 m/sin the .25% group; .21 =
.07 m/sin the 1.00% group, and .27 = .3 m/sin
the 1.50% group. No significant difference was
found in maximum speed between groups
(Kruskal-Wallis, H = 6.3, p = .17).

Discussion

We found that alcohol dose-dependently pro-
moted seeking behavior in Betta splendens. The
lowest dose of the drug (.10%) did not change
place preference, whereas the highest dose
(1.50%) completely altered basal preference up
to 37 days after exposure. We also found that
Betta splendens exhibited spatial memory in a
T-maze without environmental cues, but its per-

formance was significantly affected by alcohol.
Acute higher doses (1.00% and 1.50%) im-
paired memory. Chronic alcohol exposure re-
sulted in performance that was similar to with-
drawal (see Figure 2).

Many studies have shown that fish have ad-
vanced learning and memory capacity. For ex-
ample, the goldfish Carassius auratusis able to
remember the spatial position of three different
feeding sites that are distributed in an arena
(Pitcher & Magurran, 1983). The zebrafish
Danio rerio uses visual cues for guidance in
learning tasks (Karnik & Gerlai, 2012). The
Siamese fighting fish Betta splendens shows
good performance in an eight-arm radial maze
(Roitblat et al., 1982). Thus, our study corrob-
orated the fact that fish utilize cognition to exit
amaze and receive areward. The memory task
that was used in the present study requires the
animal to remember where the exit of the maze
is located (e.g., left or right side).
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However, when B. splendens was exposed to
high alcohol doses, the fish presented apparent
difficulty exiting the maze. One brain region
that is particularly sensitive to alcohol is the
cerebellum (Bauer-Moffett & Altman, 1975;
Clarren, Alvord, Sumi, Streissguth, & Smith,
1978; Pierce, Goodlett, & West, 1989; Good-
lett, Marcussen, & West, 1990; Sowell et al.,
1996). The cerebellum is responsible for many
functions, including some cognitive and emo-
tional functions (Yoshida, Okamura, & Ue-
matsu, 2004; Rodriguez et al., 2005; Wolf,
Rapoport, & Schweizer, 2009; Yoshida &
Kondo, 2012), but it also plays an important
role in motor control (Ito, 1984; Yoshida et al.,
2004), which is one of the first functions dam-
aged by alcohol intake (Thomas, Goodlett, &
West, 1998). Some studies suggest that alcohol
directly affects cerebellar Purkinje cells (Phil-
lips & Cragg, 1982; Pierce, Serbus, & Light,
1993; Napper & West, 1995), causing a de-
crease in number, which is likely related to
motor deficits caused by alcohol exposure.
Gruol and Curry (1995) proposed that alcohol
damages cerebellar Purkinje cells through its
effect on intracellular calcium concentrations
elicited by glutamatergic neurotransmission.
This potential mechanism is not completely
clear, and other studies that evaluate the effects
of alcohol on motor function may help better
understand how the drug acts in the brain.

All vertebrates have a cerebellum that varies
in size and shape (Meek, 1992), but it has very
similar structural patterns and cytoarchitectural
organization (Nieuwenhuys, ten Donkelaar, &
Nicholson, 1998; Butler & Hodos, 2005). Al-
though most knowledge about cerebellar func-
tion has been derived from mammalian studies,
fish show comparable potential and simpler
neural pathways that make them an adequate
model for brain research (Gerlai et al., 2000;
Gerlai, 2002). Lesions of the cerebellum in rats
have been reported to prevent the acquisition of
spatial information, in which animals exhibit
defective exploration patterns and peripheral
circling in spatial tasks, such as the water maze
and T-maze (Lalonde & Botez, 1986; Goodlett,
Nonneman, Valentino, & West, 1988; Petrosini,
Leggio, & Molinari, 1998; Rondi-Reig, Le
Marec, Caston, & Mariani, 2002). In fish, some
studies have shown that damage to the cerebel-
lum impairs conditioned cardiac responses in
classical fear conditioning paradigms (Y oshida

et a., 2004; Yoshida & Hirano, 2010) and ste-
reotyped and inefficient exploratory behavior
and inaccuracy in achieving task goals that re-
quire spatial memory (Gémez, Duran, Salas, &
Rodriguez, 2010). Although Betta splendens
had an intact cerebellum in the present study,
our results clearly suggest that the ability to
reach the maze exit was decreased by alcohol.
Thus, we believe that the behavioral disadvan-
tage caused by the drug may have occurred
because of its effects in the brain, mainly the
cerebellum.

The cerebellum is an important area because
it isrequired for motor function and contributes
to different sensorial, cognitive, and emotional
functions (Sullivan, Deshmukh, Desmond, Lim,
& Pfefferbaum, 2000; Alvarez et a., 2002; Ro-
driguez et a., 2005; Y oshida & Hirano, 2010).
The cerebellum is also highly sensitive to alco-
hol exposure (Sowell et a., 1996). Alcohal is
one of the most effective drugs in destroying
brain tissue (Willoughby, Sheard, Nash, &
Rovet, 2008; Norman, Crocker, Mattson, & Ri-
ley, 2009) and impairing different types of
memory (Matthews, Simson, & Best, 1995;
Uecker & Nadel, 1996; Hamilton, Koditu-
wakku, Sutherland, & Savage, 2003). In fact,
our data corroborate these findings, in which
high doses of acohol affected the fishes' per-
formance in finding the T-maze exit. However,
the precise effects of alcohol on the cerebellum
and other brain areas still need to be confirmed
in future studies.

Although we showed that animals that were
exposed to acute 1.50% alcohol exhibited a
decrease in the time to complete the task on
the final day (Figure 2a), this response may
have been more related to the harmful effects
of alcohol with the first exposure (which
caused navigation difficulties) than related to
memory. One could argue that alcohol affects
motion, and high alcohol doses make the an-
imals too slow to complete the task. This
possibility, however, may be discarded in the
present study because the average and maxi-
mum swim speeds were not significantly dif-
ferent between groups. The alcohol doses that
were used in the present study appear to have
acted mainly in areas related to egocentric
spatial memory more than in areas related to
motion. Acute alcohol exposure potentiates
vy-aminobutyric acid-A (GABA,) receptor
function (Mehta & Ticku, 1988) and inhibits
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N-methyl-D-aspartate receptor function
(Lovinger, White, & Weight, 1989), which
has been suggested to inhibit memory forma-
tion (Morrisett & Swartzwelder, 1993;
Schummers & Browning, 2001).

The main difference in performance in fish
that were chronically exposed to alcohol was
observed between the .10% and 1.50% doses.
Fish that were exposed to the other doses
(.25% and 1.00%) exhibited memory perfor-
mance that was comparable to controls
(.00%). Chronic alcohol exposure appeared to
promote tolerance to the drug. This result is
consistent with Boulouard, Lelong, Daoust,
and Naassila (2002), who showed that chronic
alcohol administration produces tolerance to
the adverse effects of acute alcohol exposure
in rats. According to these authors, tolerance
can be partly attributed to cellular and molec-
ular adaptations of glutamate and GABA neu-
rotransmissions. However, an intriguing find-
ing was the harmless effect of chronic
exposure to .10% alcohol. We suggest that the
.10% concentration may have induced a low
level of stress in the central nervous system
and thus may have increased cholinergic neu-
rotransmission to allow the fish to complete
the task. This possibility is consistent with the
suggestions of Ruitenberg et al. (2002) but
yet to be confirmed.

Our results also showed that 7 days of
withdrawal had no effect on memory. Fish
that were subjected to withdrawal performed
similarly to control fish (.00%). One hypoth-
esis could be that the B. splendens exhibits
tolerance to acohol and recovers more effi-
ciently than other animals, possibly because
of the high neurogenesis that is observed in
fish (Grandel, Kaslin, Ganz, Wenzel, &
Brand, 2006). Other reports indicate that the
harm caused by alcohol abuse can be reversed
by suspending its use (Naranjo, Knoke, &
Bremner, 2000). Neuroimaging studies have
confirmed that brain dysfunctions that are re-
lated to alcohol may be reversible over the
time of withdrawal (Tapert et al., 2001).
However, differences in recovery may be ob-
served according to the affected brain region,
duration of drug exposure, and extent of dam-
age (Savage et al., 2000). The damage may be
irreversible after years of substance abuse,
such as in Wernicke Korsakoff alcoholic de-
mentia (Savage et al., 2000). In the present

study, the alcohol exposure period was prob-
ably not sufficiently long to trigger large neu-
ronal loss, thus facilitating the recovery of
cognitive function after a short period of ab-
stinence. However, brain abnormalities after
prolonged alcohol use still require further in-
vestigation that focuses on the duration of
drug use and the withdrawal period.

Furthermore, we found that the low dose of
alcohol did not generate any seeking behav-
ior, whereas higher doses led to prominent
changes in behavior. In mammals, the me-
solimbic dopamine system plays an important
role in the positive reinforcing effects of
drugs of abuse (O’ Brien & Gardner, 2005). In
the present study, we found that a single
exposure to 1.00% and 1.50% alcohol
changed place preference up to 37 days after
exposure, characterizing drug-seeking behav-
ior. Our observation supports the results re-
ported by Brennan et al. (2011) and Mathur et
al. (2011). These authors proposed that only
one exposure to the drug is sufficient to cause
addiction, possibly because of altered dopa-
mine secretion patterns, which does not ap-
pear to occur for relatively low doses
(O’'Brien & Gardner, 2005). Exposure to
.10% alcohol did not induce seeking behav-
ior, and low alcohol doses do not appear to
affect brain dopamine secretion to a large
extent. Thus, we believe that a threshold of
alcohol use triggers seeking behavior and the
future development of addiction. Thompson,
Stockwell, and MacDonald (2012) measured
the risk of developing addiction in adoles-
cents and also found an increasing linear re-
lationship between addiction and the amount
of alcohol consumed in a single episode.

Finally, the present results indicate that the
Siamese fighting fish can be a useful model for
high-throughput screening with alcohol. Alco-
hol can either positively or negatively interfere
with behavior, depending on the dose tested.
Low doses of alcohol may not affect memory or
cause changes in seeking behavior, whereas
high doses can impair cognition and cause
drug seeking for prolonged periods of time.
Future studies should investigate the effects
of alcohol on brain tissue (neurotransmitters,
proteins, and neuroplasticity) to better under-
stand whether low doses are actually harmless
as demonstrated herein and why high doses
are so deleterious.
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