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Abstract

Aims: Fetal alcohol spectrum disorder (FASD) is an umbrella term to describe the effects of ethanol

(Eth) exposure during embryonic development, including several conditions from malformation

to cognitive deficits. Zebrafish (Danio rerio) are a translational model popularly applied in brain

disorders and drug screening studies due to its genetic and physiology homology to humans added

to its transparent eggs and fast development. In this study, we investigated how early ethanol

exposure affects zebrafish behavior during the initial growth phase.

Methods: Fish eggs were exposed to 0.0 (control), 0.25 and 0.5% ethanol at 24 h post-fertilization.

Later, fry zebrafish (10 days old) were tested in a novel tank task and an inhibitory avoidance

protocol to inquire about morphology and behavioral alterations.

Results: Analysis of variance showed that ethanol doses of 0.25 and 0.5% do not cause morpho-

logical malformations and did not impair associative learning but increased anxiety-like behavior

responses and lower exploratory behavior when compared to the control.

Conclusion: Our results demonstrate that one can detect behavioral abnormalities in the zebrafish

induced by embryonic ethanol as early as 10 days post-fertilization and that alcohol increases

anxious behavior during young development in zebrafish.

INTRODUCTION

Alcohol is a legalized drug of high social acceptance worldwide. This
psychotropic substance is, by far, the most widely used drug in the
world, which outweighs alcohol consumption and surpasses all illicit
drugs together (Lima, 2003; Grinfeld, 2009; Guerri and Pascual,
2010). Although the higher incidence of addictive behavior are the
major contributors to global indices of morbidity and premature
death (Lim et al., 2012; Gowing et al., 2015), the trade of alcoholic
beverages brings high profitability for the economy, favoring the
often encouraged consumption (de Melo Freire et al., 2005; World
Health Organization, 2019).

One of the biggest concerns about alcoholic beverages intake
is its consumption by pregnant women. The National Survey on
Drug Use and Health shows that about 20% of women reported

the use of alcohol during pregnancy and postpartum (Tebeka et al.,
2020), an increase of more than 10% in data for the past 10 years
(Abuse, 2007). Ethanol exposure during embryonic developmental
phase can cause a range of abnormalities, which includes long-lasting
physiological and behavioral alterations with significative effects
for the developing fetus and through child lifespan (Sadrian et al.,
2013; Gil-Mohapel et al., 2019). The group of conditions that covers
the deficits caused by maternal alcohol ingestion is known as fetal
alcohol spectrum disorders (FASD). Still, the variability of symptoms
resulting from FASD comes from different factors as the amount of
alcohol intake, frequency of the alcohol ingestion and phase of the
gestational period when exposure occurred (Guerri et al., 2009).

Prenatal alcohol exposure is a public health concern. The placenta
does not have the physiological capacity to metabolize ethanol as
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the liver does, and the drug chemical structure favors a fast diffusion
across biological membranes being delivered directly to the amniotic
fluid and the fetus (Heller and Burd, 2014). Within 1 h of drug expo-
sure, amniotic fluid and fetal blood reach equivalent ethanol levels
to the maternal blood (Idänpään-Heikkilä et al., 1972; Burd et al.,
2007). The fetal liver does not have an effective ethanol metabolizing
system yet; it has been shown that the primary mechanism for ethanol
metabolism is catalase and not alcohol dehydrogenase (Tran et al.,
2007). The slow process leads to the accumulation of toxic substances
for child development. The final consequences may be intrauterine
growth retardation, delayed development, congenital malformations,
besides other aspects that place FASD among the current most
common cause of mental and behavioral deficits (Warren et al., 2011;
Sadrian et al., 2013).

For the developing neural system, ethanol exposure affects several
molecular mechanisms, such as alterations in the regulation of gene
expression (Rifas et al., 1997; Guerri et al., 2009; Kalisch-Smith et al.,
2016), interference in neural stem cell migration and differentiation
(Miller, 2006; Mooney et al., 2006; Muralidharan et al., 2016;
Kashem et al., 2018) and alterations in critical functions of glia
(Guerri and Renau-Piqueras, 1997; Guerri et al., 2009). Studies also
found alcohol inducing microcephaly, synaptogenesis alterations and
neuronal cell loss (Guerri and Renau-Piqueras, 1997; Tenkova et al.,
2003; da Silva et al., 2018; Rah et al., 2019; West et al., 2019).
These effects are ultimately related to the child behavior after birth,
who present several levels of cognitive deficits and behavioral issues,
like attention deficit, reflex motor control impairment, hyperactivity,
visuospatial abilities and deficits in fine and gross motor control
(Carvan et al., 2004; Wozniak et al., 2004, 2017; Kalberg et al.,
2006; Mattson et al., 2006; Popović et al., 2006; Shan et al., 2015;
Carter et al., 2016). Although many studies have focused on effects
of premature alcohol exposure, most of them focus on high doses of
intoxication because it is usually detected earlier. The less prominent
cases, in which the mothers were not aware of the pregnancy or
do not admit a small amount of alcohol use, are more challenging
to approach and many fewer extreme cases of FASD are not even
identified. In this sense, studies with moderate ethanol effects are
still needed to bridge the gap on those superficial responses that
may go unnoticed throughout the child’s growth or even treated as
another type of disability (Marquardt and Brigman, 2016; Inkelis and
Thomas, 2018; Agnihotri et al., 2019). For instance, children with
attention deficits and severe anxiety are usually not related to FASD
and treated as other mental disorders because of the poor behavioral
diagnosis for ethanol-exposed children (American Psychiatric Asso-
ciation, 2000; Glass et al., 2013).

One of the challenges of analyzing neurodevelopmental abnor-
malities in vertebrates as animal models for human diseases is that
rodents—the most common scientific model—like other mammals,
develop inside the uterus. Besides the fact that it is not possible
to follow immediate drug effects, ethanol concentrations used and
exposure time are difficult to determine as the mother’s metabolic
functions must be considered. Therefore, vertebrates with external
fertilization have gained field (Nakatsuji, 1983; Peng et al., 2004;
Matsui et al., 2006; Marrs et al., 2010; McClure et al., 2011; Fainsod
and Kot-Leibovich, 2017) and the zebrafish appeared as an ideal
model for FASD studies (Mahabir et al., 2014; Shan et al., 2015; Bag-
gio et al., 2018). Comparisons between human, rodents and zebrafish
show similar craniofacial anomalies after high concentration ethanol
exposure on developmental phase, that is small eyes, smaller head and
malformed body structures (Warren et al., 2011; Murawski et al.,
2015), as seen in fetal alcohol syndrome, the most serious cases of

FASD. In this sense, less severe FASD may take advantage of the
zebrafish model, and behavioral indicators of low alcohol exposure
could be screened for future use in diagnosis.

Zebrafish has been very well applied for studies in learning
tasks (Karnik and Gerlai, 2012; Roberts et al., 2013; Manuel et al.,
2014; May et al., 2016; Roy and Bhat, 2016), including in our
own research group (Chacon and Luchiari, 2014; Oliveira et al.,
2015; Amorim et al., 2017). Here, we sought to investigate the
effects of ethanol exposure on zebrafish behavior, first performing
a behavioral screening through a Novel Tank Task, followed by an
Inhibitory Avoidance Test. Quick reactions to noxious stimuli in
zebrafish are one of the instinctive abilities crucial to survival, mainly
because these animals do not have parental care, which demands
precocious aversive learning to guarantee the physical integrity and
to avoid predators. Thus, we hypothesized that embryonic exposure
to moderate ethanol concentration does not affect morphology but
hinder learning and lead to behavioral deficits that can be observed
during the initial growth phase in zebrafish.

MATERIALS AND METHODS

Animals housing and ethanol exposure

Adult male and female zebrafish (Danio rerio, wild-type, 6 months
old, 0.58 ± 0.11 g) were bred following a previously established
protocol (Westerfield, 2007) to obtain zebrafish embryos for ethanol
exposure. Two females and one male were set up in breeding tanks
(15 × 20 × 10 cm tank with a removable tray with holes that
allow eggs to fall through) and left overnight for spawning on
the first hour of light in the next morning. Eggs were collected,
counted and maintained in Petri dishes with system water (water
from the system where adult fish were held) at 28◦C till 24 h post-
fertilization (hpf). This time point has been previously chosen for
embryo exposure to ethanol (Bilotta et al., 2004; Mahabir et al.,
2014; Bailey et al., 2015; Baggio et al., 2018) because it matches
the period when the brain development take place and synapses start
to be functional (Kimmel et al., 1990). This stage equals the end of
the first gestational trimester in humans (Fernandes et al., 2015), a
critical phase that may negatively affect neuronal morphology. At
the given time, eggs were submerged in ethanol solution at three
different concentrations for 2 h: Eth 0% (control), Eth 0.25% and
Eth 0.5%. Ethanol was previously prepared by diluting absolute
ethyl ethanol 99.8% PA (Dynamics, Contemporary Chemistry Ltd.)
in system water. Fernandes and Gerlai (2009) previously measured
ethanol concentration within the egg after 2 h of exposure, founding
that levels reach the embryo with about 1/25 to 1/30 of the alcohol
concentration employed. The concentrations were chosen because
they do not cause gross morphological deformations (Fernandes
and Gerlai, 2009; Buske and Gerlai, 2011), since this is not the
objective of this work, while higher concentrations were found to
cause teratogenic effects in zebrafish (Arenzana et al., 2006). After the
exposure period, embryos were washed twice in clean system water
for 20 min. Then, eggs were placed to grown in batches from 20 to
30, in 1 L static water until fish completed 10 days (stage named as
fry, it occurs between the larva and juvenile phases) and were tested.
Adults and embryos were kept in the same room under controlled
temperature, pH, oxygenation (28◦C, pH ∼ 6.7, O2 ∼ 6 mg/L)
and photoperiod set at 12 h light/12 h dark. The feeding regime
started at 5dpf with mixed Artemia salina nauplii and dry food
(Alcon Alevinos, 44% protein and 5% fat). All animals used in the
following tests were bred, raised and housed in the same environment.
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Fig. 1. Schematic outline of the experimental procedure for behavioral tests. (a) Novel Tank Test—animals (n = 54) were tested in a 6 cm arena, for 10 min. Time

on edge area, center area and latency to cross areas were analyzed. (b) Inhibitory avoidance—Fish fry (n = 45) were tested in a 6 cm shuttle dish and the aversive

stimulus consisted in water flow in the fishtail. The protocol consisted of 2 days of training followed by the test day (Day 3). Time on black or white side and

latency to cross areas were analyzed. For both tasks, the distance to the center, movement speed, immobility time and total distance traveled were also consider.

The Animal Ethics Committee of the Federal University of Rio
Grande do Norte has approved this study (CEUA 007/2016).

Behavioral tests

Novel tank The novel tank test is a fish adapted version of the Open
Field Test, commonly used protocol to obtain behavioral data related
to animal locomotion and anxiety. This kind of task help to identify
pharmacological effects of drugs applied to various species as rodents
(Karl et al., 2003; Deacon, 2006; Gould et al., 2009), primates
(Ferguson and Bowman, 1990; Dal-Pan et al., 2011) and recently
fish (Champagne et al., 2010; Rosemberg et al., 2011; Stewart et al.,
2012; Collier et al., 2017; Baker et al., 2018). When previously
applied for zebrafish, the novel tank protocol disclosed similarities
between rodents and zebrafish regarding strategies adopted in the
exploration of the novel environment. For example, zebrafish and
rodents exhibit thigmotaxis (Lamprea et al., 2008; Blaser et al., 2010)
and habituation responses (change in behavior as the exploration
of new environment takes place) (Bolivar et al., 2000; Wong et al.,
2010). At 10dpf, zebrafish present functioning sensory and motor
systems; thus, a novel tank test can be applied to evaluate previous
exposure to the mentioned ethanol doses.

The protocol consisted of an arena (6 cm petri dishes, containing
system water) divided into two areas virtually determined: edge and
center (see Fig. 1a for details). Animals were individually placed in the
center of the arena, and behavior was recorded for 10 min. During
this period, the researcher was outside the testing room to avoid any
disturbances. The arena was washed, and the system water replaced
at the end of each trial. A total of 18 fry zebrafish was tested for each
ethanol treatment (n = 54). All sessions were recorded from above
using a webcam, and behavior was analyzed in tracking software.

Inhibitory avoidance The inhibitory avoidance task is also a known
protocol, based on conserved mechanisms, widely used as a tool to

study fundamental mechanisms of animals learning and memory for-
mation, as well as screen for drugs that may affect these mechanisms
(Roozendaal and McGaugh, 1996; Quevedo et al., 1999; Machado
et al., 2009). For zebrafish, this has been a standard test to study
aversive responses (Blank et al., 2009; Gorissen et al., 2015; Amorim
et al., 2017). However, there are no references to this protocol applied
to 10dpf zebrafish, even though it has been previously shown that
zebrafish larvae have excellent performance in short- and long-term
memory, associative and also social learning (Roberts et al., 2013).

Here, the half-white and half-black tanks used to inhibitory
avoidance in adult fish were adapted to fit in 6 cm diameter Petri
dishes. The arena had no physical dividers but presented white and
black bottom as visual cues (Fig. 1b). First, individual fry fish were
transferred to a transparent Petri dish for 5-min habituation to
minimize any disturbance related to handling and novel tank stress.
After that, the transparent dish was placed on a black and white
background, and the fish was always positioned to the black side
(non-preferred side at this stage) (Kalueff et al., 2013; Bai et al.,
2016). As an aversive stimulus, fish received a water flow (0.2 mL
of system water, applied with a Pasteur pipette) close to its tail every
time it entered the white side of the dish. Previous studies have shown
zebrafish responding with an escape behavior to water flow, the
same way as it reacts to a predator strike (McHenry et al., 2009;
Stewart et al., 2013).

The avoidance learning protocol lasted 3 days, with a 5-min trial
per day. On Day 1, fry were individually placed at the black side
of the dish, and as soon as it crosses to the white side, it received a
water flow close to its tail, making fry respond in a startle reaction.
Animals that did not cross to the white side during the first 5 min were
discarded. On the next day (Day 2), the procedure was repeated: fish
fry was placed on the black side of the dish and had 1 min to cross
to the other side, where it was stimulated with the water flow. If it
did not happen, the transparent Petri dish was slowly rotated until
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Fig. 2. Behavioral parameters for fry zebrafish at novel tank test. (a) Time spent in each area of the arena, (b) number of entrances at each area, (c) immobility

time, (d) total distance traveled. Animals were submitted to 0 (control), 0.25 or 0.5% of ethanol at 24hpf and tested at 10dpf. Data are expressed as mean ± SEM;

in all cases P < 0.05.

the fish was on the white side, and then it received the water flow
as if it had crossed sides. On the day after, the test trial took place.
During the test, fry fish were placed on the black side of the dish
and behavior was recorded from above for 5 min. No water flow
was applied, and fish was expected to avoid the white side due to
association with punishment. A total of 15 fry zebrafish was tested
for each ethanol treatment (n = 45). The behavior was analyzed in
tracking software.

Behavioral analysis and statistics Behavioral records were stored
as AVI files, and behavior was tracked using Zebtrack software
(Pinheiro-da-Silva et al., 2017), developed in MATLAB (R2014a,
Math Works, Natick, MA). For Novel Tank test, the parameters
considered for analyses were time spent in edge and center of the
arena, latency to reach the edge area, immobility time, total distance
traveled, movement speed [= total time in movement − immobility
time/total distance traveled], number of entrance center and distance
to the center of the arena. For the inhibitory avoidance test, the
parameters considered for analyses were time spent in black and
white sides of the arena, latency to cross areas, immobility time, total
distance traveled, movement speed, and the number of entrances in
each side of the arena.

Data were analyzed for normality using the D’Agostino—Pearson
normality test. For Novel Tank, time in each side of the arena was
analyzed using two-way analysis of variance (ANOVA) considering
as factors ethanol exposure (0, 0.25 and 0.5%) and side of the arena
(edge and center), followed by Tukey’s multiple comparison test when
needed. For the inhibitory avoidance, data on the time in black and
in white areas were analyzed using two-way ANOVA considering as
factors: ethanol exposure (0, 0.25, and 0.5%) and testing day (first
and last). For all other behavioral parameters, one-way ANOVA was
applied, followed by Tukey’s multiple comparison test when needed.

All analyses were performed using GraphPad Prism 7.0, error rate
(alpha) set to 0.05 in all cases.

RESULTS

Novel tank

Figure 2 presents the behavioral results from the Novel Tank
Task for fry fish exposed to ethanol at the embryo phase. Two-
way ANOVA showed no effects of ethanol concentration [F(2,
34) = 0.22; P = 0.80], but significant effect of the side of the arena
[F(1, 17) = 166.8; P < 0.0001] (Fig. 2a). The interaction terms
ethanol concentration vs. side of the arena were non-significant [F(2,
34) = 0.91; P = 0.40]. Tukey’s post hoc test showed that all groups
remained more time closer to the edge than in the center area during
the 10-min task (Fig. 2a).

We also analyzed the distance to the arena’s center and how many
times the fish crossed from edge to center area, that is, the number of
center entrances. The ethanol-treated groups presented no statistical
significance for the distance to the center of the arena [one-way
ANOVA: F(2, 51) = 0.99, P = 0.37]. However, one-way ANOVA
showed statistical significance for the entrances to the center of the
arena [one-way ANOVA: F(2, 51) = 5.05; P = 0.01]. Tukey’s test
indicated that Eth 0% group showed more entrances to the center
than Eth 0.5% (P < 0.05) (Fig. 2b). The time fish remained immobile
during the task was also evaluated by one-way ANOVA, although
presenting a marginal value and increased data dispersion for the
treated groups, the test showed no significance between treatments
[F(2, 51) = 3.11; P = 0.053] (Fig. 2c). Besides, we analyzed the fish
mean speed while moving, named here as movement speed. This
parameter showed a similar pattern between the three groups, and
there was no statistical significance between them [F(2, 51) = 1.55;
P = 0.22]. Regarding exploration ability, one-way ANOVA showed
statistical significance on total distance traveled between groups
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Fig. 3. Locomotor behavior of zebrafish at Inhibitory Avoidance test. During the test, animals did not receive any punishment, but learning was evaluated by (a)

time spent in the stimulus side (white area) and (b) latency to cross areas at first x last day. Values are means ± SEM. (∗) P ≤ 0.05.

Fig. 4. Behavioral parameters for fry zebrafish at Inhibitory Avoidance test. (a) Distance from arena center, (b) movement speed, (c) immobility time, (d) total

distance traveled. Animals were submitted to 0 (control), 0.25 or 0.5% of ethanol at 24hpf and tested at 10dpf. Data are expressed as mean ± SEM; in all cases

P < 0.05.

[F(2, 51) = 14.96; P < 0.0001], and Tukey’s test indicated that
the control group presented higher total distance traveled than Eth
0.25% and Eth 0.5% groups (P < 0.05) (Fig. 2d).

Inhibitory avoidance

Figure 3 depicts the behavioral parameters analyzed for the
inhibitory avoidance test. One-way ANOVA showed no statistical
significance in time spent in each area by fish fry [F(2, 41) = 1.89;
P = 0.16] (Fig. 3a). The latency to leave the black side (stimulus area)
for the three groups is shown in Fig. 3b. One-way ANOVA showed
no statistical significance between treatments in any of the days [F(2,
41) = 3.06; P = 0.057]. However, there was a statistical significance
in latency to leave the black area between the first day and test day
[RM ANOVA: F(1, 41) = 7.67; P = 0.008].

Other behavioral parameters were tested to evaluate the ani-
mal’s performance and exploration after the aversive stimulus and
are shown in Figure 4. One-way ANOVA indicated a statistical

significance for the distance to the arena center between groups
[F(2, 41) = 0.37; P = 0.004], and the Tukey’s test showed that Eth
0% group differed from Eth 0.5% (P < 0.05) (Fig. 4a). There was
no statistical significance regarding the movement speed (one-way
ANOVA: F(2, 41) = 0.28; P = 0.75] (Fig. 4b). For immobility time,
one-way ANOVA showed a statistical significance between groups
[F(2, 41) = 20.69; P < 0.0001], and the Tukey’s test indicated that
Eth 0% showed reduced immobility compared to the other groups
(Fig. 4c). For total distance traveled, one-way ANOVA showed a
statistical significance between groups [F(2, 41) = 7.29; P = 0.002],
and the Tukey’s test showed that Eth 0% group traveled higher
distance than the other groups (Fig. 4d).

DISCUSSION

In this study, we tested if embryonic ethanol exposure effects on
behavior can be observed at developmental stages as early as 10 days
post-fertilization (fry stage) in zebrafish. We tested moderate ethanol
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concentrations, which do not cause morphological malformations
(0.25 and 0.5% ethanol) and used the novel tank and the inhibitory
avoidance test to evaluate anxiety-like behavior and aversive asso-
ciative learning. We observed that moderate ethanol exposure during
embryogenesis leads to increased anxiety and decreased locomotion
in fry, while it does not affect learning to avoid an aversive stimulus.

The low to moderate embryonic ethanol exposure effects in
humans are challenging to be diagnosed because it is usually asso-
ciated with other causes. When malformation is combined with
behavioral issues, the whole picture is brighter, and treatments can
be started sooner. However, dealing exclusively with behavior will
demand a more detailed and more profound approach. Several
studies on FASD focus on the most critical cases of FAS, which
are well described in the literature (Eason et al., 2017; Popova
et al., 2017; Wilhoit et al., 2017; Montgomery et al., 2018; Rohac
et al., 2019). Other studies evaluate FASD in young adults or adults,
missing the important interval of development in which different
treatments and therapies could be applied to alleviate and smooth the
effect of the drug on the behavioral repertory (Brintnell et al., 2011;
Denny et al., 2017).

In the present study, we tested zebrafish behavior at 10dpf in
search for behavioral indicators of embryonic ethanol exposure. The
increased anxiety-like behavior and decreased locomotion observed
in fry previously exposed to 0.25 and 0.5% ethanol depict the signs
of behavioral change that can be observed early (Fig. 2). In zebrafish,
thigmotaxis is a behavioral measure for the tendency that an individ-
ual has to remain close to the walls, as opposed to actively exploring
the environment during a test (Champagne et al., 2010; Richendrfer
et al., 2012; Best et al., 2017). We observed that all groups (Eth
0%, 0.25% and 0.5%) spent more time close to the edges of the
arena in the novel tank test, a result that is expected as a reaction
to novelty (Wong et al., 2010; Stewart et al., 2012). However, both
groups treated with ethanol showed reduced locomotion and reduced
exploration of the center of the arena (Fig. 2b and d), behaviors that
indicate high levels of anxiety along with the test. The exploratory
behaviors help in anti-predation and foraging abilities, being consid-
ered an important feature, especially during developmental phases
in zebrafish (Adriaenssens and Johnsson, 2013; Baker et al., 2018).
The diminished exploratory activity induced by ethanol treatment
replicates previous results described by Baggio et al. (2018) in adult
FASD zebrafish. Other authors have also reported embryonic ethanol
exposure led to higher anxiety levels both in larvae zebrafish (Ramlan
et al., 2017; Abozaid et al., 2020) and juvenile rats (Brolese et al.,
2014; Diaz et al., 2016; Ramlan et al., 2017; Rouzer et al., 2017;
Balaszczuk et al., 2019). In the present study, we corroborate with
cited embryonic ethanol effects showing that behavioral responses
can be observed during early stages (10dpf), what contributes to the
syndrome thorough understanding and suggests that the attentive
look at the first phases of growth may help to diagnose and initiate
early treatment for FASD cases.

Other behavioral parameters observed herein, as reduced total
distance traveled and increased immobility time (Figs 2 and 4), are
also indicative of anxiety, while embryonic ethanol exposure did
not impair locomotion capacity (measured by the movement speed).
Acute and chronic ethanol exposure has previously been found
to affect freezing and exploratory responses in adults (Rosemberg
et al., 2012; Pannia et al., 2014; Amorim et al., 2017) and larvae
zebrafish (Baiamonte et al., 2015). However, the anxiolytic effects of
embryonic ethanol exposure can jeopardize the healthy development
of the nervous system (Eckardt et al., 1998; Ramlan et al., 2017;
Gil-Mohapel et al., 2019) leading to the disturbing anxious reaction

that we showed in this study and was also observed in adult FASD
zebrafish (Seguin et al., 2016; Baggio et al., 2018). While anxiety
is an important feature to prevent one from being extra exposed to
risk and prepare itself for several stressful situations, increased levels
of anxiety may affect individual performance (Jesuthasan, 2012). In
recent years, the increasing cases of mental disorders, particularly
the ones associated with anxiety, have a serious negative impact on
individuals and society (Wittchen and Jacobi, 2005). To date, we
are not aware of any study that has investigated ethanol anxiolytic
effects during development using novel tank test in fry zebrafish.
Still, Lockwood et al. (2004) obtained similar results for acute
ethanol exposure inducing thigmotaxis behavior when they tested
7dpf larvae. Currently, thigmotaxis is a well-known anxiety indicator
(Kalueff et al., 2013) used in many studies. Based on our results
on zebrafish from the early developmental stage (10dpf) compiled
with data investigation of adult zebrafish behavior (Rico et al., 2007;
Rosemberg et al., 2012), it is very likely that embryonic ethanol
exposure causes increased anxiety that is expressed throughout the
ontogenesis. However, further studies, as measures of stress levels,
are needed to confirm whether exposure to embryonic ethanol has
doubtless affected anxiety-like behavior.

The neurochemical changes caused by excessive anxiety are not
fully understood. However, common brain areas are involved in
learning and memory, as well as in behavioral and physiological
responses to fear and anxiety. In this sense, anxiety has been found
context dependent by many authors (Luca and Gerlai, 2012; Parker
et al., 2014; Baiamonte et al., 2015; Seguin et al., 2016; Baggio
et al., 2018). Thus, we tested whether the anxiolytic response caused
by embryonic ethanol exposure could interfere with the learning of
a fear-related task. A growing number of studies have shown that
embryonic ethanol exposure impairs learning (Hamilton et al., 2003;
Lee et al., 2009; Norman et al., 2009; Fan et al., 2016). However, the
harmful effects seem to depend on ethanol exposure concentration,
time length and embryo developmental stage (May et al., 2013;
Veazey et al., 2015; Squeglia and Gray, 2016; Facciol et al., 2017;
Fernandes et al., 2019).

In the inhibitory avoidance test used in this study, fry zebrafish
spent more time on the non-preferred side of the arena irrespective
of ethanol treatment, indicating associative learning of the arena
background to the negative stimulus (Fig. 3). Fish from all treatments
also showed increased latency to cross the areas during the test.
These results suggest that avoidance learning was not affected by
early ethanol exposure. Increased inhibitory avoidance behavior is
indicative of associative skills, corroborating with results for past
publications using black/white and light/dark preference (Blaser and
Rosemberg, 2012; Dahlén et al., 2019) and electroshock stimulus
(Manuel et al., 2014; Amorim et al., 2017). However, opposite to
other studies, the ethanol concentration applied here was not enough
to change animal learning ability (Obernier et al., 2002; Brady et al.,
2012; Gomez et al., 2013; Pittman and Lott, 2014). All those studies
have in common the use of a higher dose of ethanol or binge drink
protocol model, frequently exposing the animals to the drug.

Although animals showed to associate the aversive stimulus to
a context (black or white side), we must consider the nature of the
stimuli applied in our study. For 10dpf zebrafish, the water flow is
a strong and aversive signal that elicits a startle reaction, a reflex
that serves to the protection and facilitates escape response. The
water flow has been mentioned as an effective aversive stimulus in
other studies, once the lateral line system could originate an escape
response since very early in life (McHenry et al., 2009; Liao, 2010;
Stewart et al., 2013). Thus, we speculate that such a severe stimulus
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triggers instinctive and necessaire reaction to preserve the integrity
of the animal and that its associative capacity is maintained even
after ethanol exposure. However, zebrafish subjected to the inhibitory
avoidance test was not tested again for anxiety and we cannot discard
the effects of consecutively stressing the animal with the water flow
to its behavior repertory. It is known that contexts in which one
experience punishment can be associated with the negative experience
and unleash behavioral changes related to anxiety in eventual context
exposure (Roeckner et al., 2017). Future studies should approach the
forthcoming effects of adverse experiences during the early develop-
mental phase in FASD individuals. It would serve to understand better
how embryonic ethanol exposure and adverse experiences mold an
individual’s life later.

In the present study, we used simple tasks (novel tank and
inhibitory avoidance test) to approach moderate ethanol exposure
during embryonic development. Although we did not observe harm-
ful effects on learning, it is also important to point out that the
FASD range is substantially varied, especially in cases of embryo
exposure to moderate ethanol concentration. Although the effects on
organisms are not severe, it changes different behavioral parameters
indirectly related to cognition (Marrs et al., 2010; Brady et al., 2012;
Muralidharan et al., 2015; Roozen et al., 2016). Conduct disorders
are known to be related to embryonic ethanol exposure, for example,
autistic spectrum, depression and social difficulties (Caldwell et al.,
2008; Sadrian et al., 2013; Parker et al., 2014; Tsang et al., 2016;
Cananzi and Mayhan, 2017; Baggio et al., 2018; Roozen et al.,
2018). In this study, the increased anxiety-like behavior observed in
animals exposed to 0.25 and 0.5% ethanol indicates such effects.
More than that, due to the difficulty in diagnosing mild cases of
FASD, the early monitoring and identification of altered behavior
such as increased anxiety are beneficial. Our study shows that FASD
signals can be observed in age as early as 10dpf in zebrafish and
reinforces the need to investigate mild cases of ethanol exposure
during fetal development, encompassing different doses of ethanol
and also behavioral and cognitive testing at longer time intervals
to reach as many time points as possible in order to build a bigger
picture of the ethanol consequences. In this regard, new and specific
therapies need to be devised for specific interventions, as is the case
of anxiety disorders related to FASD. Thus, the sooner it is identified
and diagnosed, the sooner it could be treated.
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